
人工晶体学报 ›› 2026, Vol. 55 ›› Issue (1): 120-127.DOI: 10.16553/j.cnki.issn1000-985x.2025.0145
收稿日期:2025-07-08
出版日期:2026-01-20
发布日期:2026-02-05
通信作者:
姚威
作者简介:郭鑫宇(2002—),男,辽宁省人,硕士研究生。E-mail:xyuguo2025@163.com
基金资助:
GUO Xinyu(
), CHEN Wei, YAO Wei(
), GAO Enjun
Received:2025-07-08
Online:2026-01-20
Published:2026-02-05
Contact:
YAO Wei
摘要: 以硝酸锌、吡嗪-2,3,5,6-四羧酸为原料,采用溶剂热法成功制备了一种新型锌基配合物Zn2(H2PZTC)2·0.08DMSO·4C2H7N·2H2O(配合物1,H4PZTC=吡嗪-2,3,5,6-四羧酸,C8O8N2H4, DMSO=二甲基亚砜, C2H6SO),并通过单晶X射线衍射、粉末X射线衍射、红外光谱和热重分析对其结构进行了表征。配合物1中的锌离子通过质子化的吡嗪-2,3,5,6-四羧酸形成了两种二级建筑单元,各建筑单元交错排列形成了二维层状结构,并借助氢键弱作用形成三维超分子结构。荧光性能的研究结果表明Fe3+与配合物1之间存在竞争吸收,所以配合物1对Fe3+表现出良好的荧光猝灭效果和较低的检测限。
中图分类号:
郭鑫宇, 陈威, 姚威, 高恩军. 锌基配合物的合成及其对水中Fe3+的荧光检测性能探索[J]. 人工晶体学报, 2026, 55(1): 120-127.
GUO Xinyu, CHEN Wei, YAO Wei, GAO Enjun. Synthesis of Zinc-Based Complex and Exploration of Fluorescence Sensing Performance for Fe3+ in Aqueous Solutions[J]. Journal of Synthetic Crystals, 2026, 55(1): 120-127.
| Complex | C24.16 H36.48 N8 O18.08 S0.08 Zn2 | CCDC | 2466320 |
|---|---|---|---|
| Formula weight | 744.40 | μ/mm-1 | 1.461 |
| Temperature/K | 150.0 | F(000) | 753.0 |
| Crystal system | Triclinic | Crystal size/mm3 | 0.24×0.22×0.2 |
| Space group | P1 | Radiation | Mo Kα(λ=1.541 78 Å) |
| a/nm | 1.093 62(2) | 2θ range for data collection/(°) | 6.16 to 149.494 |
| b/nm | 1.124 53(2) | Index range | -13≤h≤13, -14≤k≤14, -18≤l≤17 |
| c/nm | 1.439 30(3) | Reflections collected | 22 346 |
| α/(°) | 87.860 0(10) | Independent reflections | 6 965 [Rint=0.029 3, Rsigma=0.033 6] |
| β/(°) | 85.768 0(10) | Data/restraints/parameters | 6 965/0/343 |
| γ/(°) | 79.127 0(10) | Goodness-of-fit on F2 | 1.047 |
| Volume/nm3 | 1.733 05(6) | Final R indexes [I≥2σ (I)] | R1=0.085 0, wR2=0.241 8 |
| Z | 2 | Final R indexes [all data] | R1=0.087 7, wR2=0.247 2 |
| ρcalc/(g·cm-3) | 1.427 | Largest diff. peak/hole/(e·Å-3) | 1.22/-0.73 |
表1 配合物1的晶体结构数据
Table 1 Crystal data of complex 1
| Complex | C24.16 H36.48 N8 O18.08 S0.08 Zn2 | CCDC | 2466320 |
|---|---|---|---|
| Formula weight | 744.40 | μ/mm-1 | 1.461 |
| Temperature/K | 150.0 | F(000) | 753.0 |
| Crystal system | Triclinic | Crystal size/mm3 | 0.24×0.22×0.2 |
| Space group | P1 | Radiation | Mo Kα(λ=1.541 78 Å) |
| a/nm | 1.093 62(2) | 2θ range for data collection/(°) | 6.16 to 149.494 |
| b/nm | 1.124 53(2) | Index range | -13≤h≤13, -14≤k≤14, -18≤l≤17 |
| c/nm | 1.439 30(3) | Reflections collected | 22 346 |
| α/(°) | 87.860 0(10) | Independent reflections | 6 965 [Rint=0.029 3, Rsigma=0.033 6] |
| β/(°) | 85.768 0(10) | Data/restraints/parameters | 6 965/0/343 |
| γ/(°) | 79.127 0(10) | Goodness-of-fit on F2 | 1.047 |
| Volume/nm3 | 1.733 05(6) | Final R indexes [I≥2σ (I)] | R1=0.085 0, wR2=0.241 8 |
| Z | 2 | Final R indexes [all data] | R1=0.087 7, wR2=0.247 2 |
| ρcalc/(g·cm-3) | 1.427 | Largest diff. peak/hole/(e·Å-3) | 1.22/-0.73 |
| D—H…A | d(D—H)/nm | d(H…A)/nm | d(D…A)/nm | ∠D—H…A/(°) |
|---|---|---|---|---|
| N(2)—H(2)…O(6) | 0.88 | 0.236 | 0.275 4(9) | 107 |
| N(2)—H(2)…O(16) | 0.88 | 0.213 | 0.289 0(10) | 145 |
| N(6)—H(6)…O(4) | 0.88 | 0.253 | 0.321 5(8) | 135 |
| C(2)—H(2B)…O(10) | 0.98 | 0.242 | 0.333 4(17) | 154 |
| C(2)—H(2B)…O(18) | 0.98 | 0.246 | 0.327 7(17) | 141 |
| C(5)—H(5C)…O(12) | 0.98 | 0.243 | 0.339 3(10) | 168 |
| C(9)—H(9B)…O(18) | 0.98 | 0.244 | 0.314 1(11) | 128 |
| C(17)—H(17A)…O(15) | 0.98 | 0.232 | 0.322 1(15) | 152 |
表2 配合物1的氢键
Table 2 Hydrogen bonding for complex 1
| D—H…A | d(D—H)/nm | d(H…A)/nm | d(D…A)/nm | ∠D—H…A/(°) |
|---|---|---|---|---|
| N(2)—H(2)…O(6) | 0.88 | 0.236 | 0.275 4(9) | 107 |
| N(2)—H(2)…O(16) | 0.88 | 0.213 | 0.289 0(10) | 145 |
| N(6)—H(6)…O(4) | 0.88 | 0.253 | 0.321 5(8) | 135 |
| C(2)—H(2B)…O(10) | 0.98 | 0.242 | 0.333 4(17) | 154 |
| C(2)—H(2B)…O(18) | 0.98 | 0.246 | 0.327 7(17) | 141 |
| C(5)—H(5C)…O(12) | 0.98 | 0.243 | 0.339 3(10) | 168 |
| C(9)—H(9B)…O(18) | 0.98 | 0.244 | 0.314 1(11) | 128 |
| C(17)—H(17A)…O(15) | 0.98 | 0.232 | 0.322 1(15) | 152 |
| [1] | ZHAO D, LIU X-H, ZHAO Y, et al. Luminescent Cd(II)-organic frameworks with chelating NH2 sites for selective detection of Fe(III) and antibiotics[J]. Journal of Materials Chemistry A, 2017, 5(30): 15797-15807. |
| [2] | SAHOO S K, SHARMA D, BERA R K, et al. Iron(III) selective molecular and supramolecular fluorescent probes[J]. Chemical Society Reviews, 2012, 41(21): 7195-7227. |
| [3] | ZHANG M F, HAN J, WU H P, et al. Tb-MOF: a naked-eye and regenerable fluorescent probe for selective and quantitative detection of Fe3+ and Al3+ ions[J]. RSC Advances, 2016, 6(97): 94622-94628. |
| [4] | RUBIN H N, REYNOLDS M M. Amino-incorporated tricarboxylate metal-organic framework for the sensitive fluorescence detection of heavy metal ions with insights into the origin of photoluminescence response[J]. Inorganic Chemistry, 2019, 58(16): 10671-10679. |
| [5] | BANSOD B, KUMAR T, THAKUR R, et al. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms[J]. Biosensors and Bioelectronics, 2017, 94: 443-455. |
| [6] | ZEESHAN M, JAN F A, ALI W, et al. Green one step synthesis of carbon dots from Grapes peel, characterization and application as a fluorescence probe for the detection of some heavy, light metals ions and DNA binding[J]. Chemistry Africa, 2024, 7(9): 4975-4984. |
| [7] | WU W J, HUO F J, YIN C X. Classification of self-assembled fluorescent probes and their application in cancer diagnosis[J]. Chemical Communications, 2025, 61(6): 1014-1031. |
| [8] | MA Z Q, TU J J, YANG D, et al. Recent advances in organic small-molecular dual-state emission probes[J]. Journal of Molecular Structure, 2024, 1312: 138478. |
| [9] | LI X C, ZHAO S J, LI B L, et al. Advances and perspectives in carbon dot-based fluorescent probes: mechanism, and application[J]. Coordination Chemistry Reviews, 2021, 431: 213686. |
| [10] | ROY D, MAJHI K, MONDAL M K, et al. Silicon quantum dot-based fluorescent probe: synthesis characterization and recognition of thiocyanate in human blood[J]. ACS Omega, 2018, 3(7): 7613-7620. |
| [11] | LIU X L, WANG Y, EFFAH C Y, et al. Endocytosis and intracellular RNAs imaging of nanomaterials-based fluorescence probes[J]. Talanta, 2022, 243: 123377. |
| [12] | GHOSH T, MONDAL A, VAMSI BHARADWAJ S V, et al. A naturally fluorescent protein C-phycoerythrin and graphene oxide bio-composite as a selective fluorescence ‘turn off/on’ probe for DNA quantification and characterization[J]. International Journal of Biological Macromolecules, 2021, 185: 644-653. |
| [13] | QIN L, ZHENG H G. Structures and applications of metal-organic frameworks featuring metal clusters[J]. CrystEngComm, 2017, 19(5): 745-757. |
| [14] | CAI D G, ZHENG T F, LIU S J, et al. Fluorescence sensing and device fabrication with luminescent metal-organic frameworks[J]. Dalton Transactions, 2024, 53(2): 394-409. |
| [15] | LUO J, LIN Y, YANG J, et al. A europium-based MOF fluorescent probe for efficiently detecting Co2+ and CrO4 2- [J]. Physica Scripta, 2024, 99(6): 065566. |
| [16] | NANDI S, REINSCH H, BISWAS S. An acetoxy functionalized Al(III) based metal-organic framework showing selective “turn on” detection of perborate in environmental samples[J]. Dalton Transactions, 2020, 49(48): 17612-17620. |
| [17] | SALEEM H, AKHTAR M N, BIKAS R, et al. Zinc-based solvents free coordination complexes: synthesis, structures, photoluminous properties, DFT calculations and Hirshfeld surface analysis[J]. Journal of Molecular Structure, 2023, 1288: 135757. |
| [18] | JI W J, LIU G F, WANG B Q, et al. Design of a heterometallic Zn/Ca-MOF decorated with alkoxy groups on the pore surface exhibiting high fluorescence sensing performance for Fe3+ and Cr2O7 2- [J]. CrystEngComm, 2020, 22(28): 4710-4715. |
| [19] | YAO W, YANG R, XU B T, et al. Synthesis, structure, adsorption and electrochemical properties of the new two-dimensional cobalt coordination polymer based on bifunctional ligand[J]. Transition Metal Chemistry, 2024, 49(5): 331-341. |
| [20] | ZHENG L L. Syntheses, crystal structures, magnetic behaviours, and thermal properties of three hydrogen-bonding networks containing dicyanamide and 4-hydroxypyridine[J]. Journal of Chemistry, 2013: 291703. |
| [21] | JING R, TANG L, HOU X Y, et al. The 3D supramolecular architecture of copper(II) 6-methyl-2-pyridone-4-carboxylate: synthesis, structure, magnetic behavior and DFT studies[J]. Zeitschrift Für Naturforschung B, 2018, 73(8): 565-570. |
| [22] | MAO X J, LI H C, SHI Y H, et al. A multifunctional fluorescence sensor based Zn(II) metal-organic framework for rapid and sensitive detection Fe3+ and Al3+ [J]. Polyhedron, 2024, 264: 117246. |
| [23] | MARIONI P A, MARTY W, STOECKLI-EVANS H, et al. Coordination polymers of Mn(II) with the ligand pyrazine-2, 3, 5, 6-tetracarboxylic acid[J]. Inorganica Chimica Acta, 1994, 219(1/2): 161-168. |
| [24] | FARAHANI Y D, SAFARIFARD V. Highly selective detection of Fe3+, Cd2+ and CH2Cl2 based on a fluorescent Zn-MOF with azine-decorated pores[J]. Journal of Solid State Chemistry, 2019, 275: 131-140. |
| [25] | MANI G, KUMAR A V, MATHEW S. ZIF-8 derived ZnO: a facile catalyst for ammonium perchlorate thermal decomposition[J]. RSC Sustainability, 2023, 1(8): 2081-2091. |
| [26] | WANG D, HU Z Y, XU S S, et al. Fluorescent metal-organic frameworks based on mixed organic ligands: new candidates for highly sensitive detection of TNP[J]. Dalton Transactions, 2019, 48(5): 1900-1905. |
| [27] | CHEN Y T, CHEN Z H, WANG J M, et al. Zero- to one-dimensional Zn24 supraclusters: synthesis, structures and detection wavelength[J]. Nanomaterials, 2023, 13(23): 3058. |
| [28] | GUO X Y, DONG Z P, ZHAO F, et al. Zinc(II)-organic framework as a multi-responsive photoluminescence sensor for efficient and recyclable detection of pesticide 2, 6-dichloro-4-nitroaniline, Fe(III) and Cr(VI)[J]. New Journal of Chemistry, 2019, 43(5): 2353-2361. |
| [29] | LI Y X, ZHANG M Y, WANG Y, et al. A Zn(II) coordination polymer for fluorescent turn-off selective sensing of heavy metal cation and toxic inorganic anions[J]. Molecules, 2024, 29(12): 2943. |
| [30] | FAN M Y, SUN B, LI X, et al. Highly fluorescent cadmium based metal-organic frameworks for rapid detection of antibiotic residues, Fe3+ and Cr2O7 2- ions[J]. Inorganic Chemistry, 2021, 60(12): 9148-9156. |
| [31] | XIAO Z Z, HAN L J, WANG Z J, et al. Three Zn(Ⅱ)-based MOFs for luminescence sensing of Fe3+ and Cr2O7 2- ions[J]. Dalton Transactions, 2018, 47(10): 3298-3302. |
| [1] | 舒航, 王海涛, 聂静嫄, 黄菊, 白静, 王宝清. 哒嗪羧基配体构筑的铜(Ⅱ)配合物及其荧光传感性能研究[J]. 人工晶体学报, 2025, 54(9): 1633-1641. |
| [2] | 梁毅农, 张恺欣, 徐娅蓉, 孙赞. 一例铅基配位聚合物的合成、晶体结构及荧光性能研究[J]. 人工晶体学报, 2025, 54(8): 1463-1469. |
| [3] | 金雨欣, 于海丽, 王钰晴, 谢龙琛, 田洪瑞, 陈宝宽. 双核VIV配合物的合成、晶体结构及磁性研究[J]. 人工晶体学报, 2025, 54(6): 1021-1026. |
| [4] | 李佳, 冯婧, 苗萌. 基于混合配体的两个同构配合物的晶体结构和磁性研究[J]. 人工晶体学报, 2025, 54(4): 693-699. |
| [5] | 王馨莹, 乔得聪, 潘会宾, 高霞, 卢久富. 混合配体构筑的Cd(Ⅱ)基荧光传感有机骨架材料及其性能研究[J]. 人工晶体学报, 2025, 54(1): 126-132. |
| [6] | 史燚威, 杨瑞杰, 张迎春, 王鑫, 王敏, 宋志国. 4,4′-联吡啶桥联的钴配位聚合物的合成、表征及量子化学计算[J]. 人工晶体学报, 2024, 53(9): 1583-1590. |
| [7] | 安航宜, 黄艳嬉, 王爱荣, 王晓丽, 李家明, 史忠丰. 新型三维Ni(II)配合物的合成、晶体结构及对水中Fe3+、CrO2-4与Cr2O2-7的检测[J]. 人工晶体学报, 2024, 53(9): 1599-1607. |
| [8] | 周云龙, 宋娟, 吴苗, 任传清, 靳玲侠. 一例吡嗪基联吡啶镍配合物的合成、晶体结构及性质研究[J]. 人工晶体学报, 2024, 53(6): 1026-1033. |
| [9] | 王建省, 孔存辉, 曾雄丰, 赵英娜. F掺杂SrTiO3的制备及光电化学阴极保护性能研究[J]. 人工晶体学报, 2024, 53(4): 707-713. |
| [10] | 马占强, 王楠, 郭葳, 张凯悦, 李娟. 柠檬酸辅助溶剂热法制备Bi2MoO6及其光催化性能[J]. 人工晶体学报, 2023, 52(8): 1477-1484. |
| [11] | 李艳, 杨振峰, 樊月瑶, 张小婷. 铂/铜合金催化剂的制备及其电解水析氢性能研究[J]. 人工晶体学报, 2023, 52(8): 1500-1508. |
| [12] | 李大鹏, 孙国富, 葛素香. 溶剂热法制备金属酞菁晶体的研究进展[J]. 人工晶体学报, 2023, 52(4): 678-687. |
| [13] | 刘晓慧, 李慧, 徐娜. 还原型磷钼酸盐构筑的多酸基超分子化合物的合成及电催化性能研究[J]. 人工晶体学报, 2023, 52(11): 2034-2040. |
| [14] | 潘会宾, 吴婷婷, 高霞, 卢久富. 基于半刚性咪唑羧酸配体构筑的Cu(I)有机骨架材料:合成、晶体结构和性质[J]. 人工晶体学报, 2023, 52(10): 1836-1841. |
| [15] | 杜晶晶, 赵军伟, 施飞, 赵忠, 卢钱杰, 程晓民. 核壳结构TiO2微球的制备及其光催化性能[J]. 人工晶体学报, 2023, 52(10): 1880-1886. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS