
人工晶体学报 ›› 2026, Vol. 55 ›› Issue (1): 142-150.DOI: 10.16553/j.cnki.issn1000-985x.2025.0059
收稿日期:2025-03-26
出版日期:2026-01-20
发布日期:2026-02-05
作者简介:梁志强(1983—),男,甘肃省人,硕士,高级工程师。E-mail:309952639@qq.com
Received:2025-03-26
Online:2026-01-20
Published:2026-02-05
摘要: 为探究二维磁性材料中过渡金属原子数量对磁性的影响,以及寻找具有优良性质的磁性二维材料,本文基于密度泛函理论,借助第一性原理计算软件VASP,对二维单层TiCuX2(X=S,Se,Te)进行了系统的理论研究。主要计算了三种材料的电子结构、稳定性、磁性、原子交换相互作用、居里温度。形成能和声子谱的计算结果证明了这三种材料的稳定性;电子结构和磁性计算分析表明,除TiCuS2呈现磁性外,三种材料均表现出铁磁性。此外,基于PBE+U和杂化泛函,也对三种材料进行了更深入的理论研究,发现三种结构磁矩均呈现出1 μB的整数磁矩,并且三种材料均保持磁性。最后,基于海森堡模型,并结合交换相互参数,利用蒙特卡洛方法计算了三种结构的居里温度。
中图分类号:
梁志强, 常蓉. 二维单层TiCuX2(X=S, Se, Te)的第一性原理研究[J]. 人工晶体学报, 2026, 55(1): 142-150.
LIANG Zhiqiang, CHANG Rong. First-Principles Study on Two-Dimensional Monolayer TiCuX2 (X=S, Se, Te)[J]. Journal of Synthetic Crystals, 2026, 55(1): 142-150.
| Structure | a/Å | Bond length/Å | ||||
|---|---|---|---|---|---|---|
| Ti—Cu | Ti—X (X=S, Se, Te) | Cu—X (X=S, Se, Te) | ||||
| TiCuS2 | 3.949 | 2.792 | 2.363 | 2.363 | -23.159 | -1.472 |
| TiCuSe2 | 4.044 | 2.859 | 2.493 | 2.493 | -21.404 | -1.107 |
| TiCuTe2 | 4.157 | 2.939 | 2.687 | 2.687 | -19.483 | -0.740 |
表1 所有结构的晶格参数a、原子键长、结构总能量Etot和形成能Ef
Table 1 Lattice parameter a, atomic bond length, total energy Etot, and formation energy Ef of all structures
| Structure | a/Å | Bond length/Å | ||||
|---|---|---|---|---|---|---|
| Ti—Cu | Ti—X (X=S, Se, Te) | Cu—X (X=S, Se, Te) | ||||
| TiCuS2 | 3.949 | 2.792 | 2.363 | 2.363 | -23.159 | -1.472 |
| TiCuSe2 | 4.044 | 2.859 | 2.493 | 2.493 | -21.404 | -1.107 |
| TiCuTe2 | 4.157 | 2.939 | 2.687 | 2.687 | -19.483 | -0.740 |
| Structure | C11/GPa | C12/GPa | C66/GPa | |||
|---|---|---|---|---|---|---|
| TiCuS2 | 47.908 | 12.798 | 26.786 | 43.305 | 0.342 | 56.917 |
| TiCuSe2 | 42.042 | 8.074 | 21.057 | 30.515 | 0.217 | 45.768 |
| TiCuTe2 | 31.035 | 4.755 | 14.538 | 17.521 | 0.396 | 30.307 |
表2 所有结构的弹性常数Cij、各向同性剪切模量G、弹性模量E和泊松比ν
Table 2 Elastic constant Cij, isotropic shear modulus G, elastic modulus E and Poisson ratio ν of all structures
| Structure | C11/GPa | C12/GPa | C66/GPa | |||
|---|---|---|---|---|---|---|
| TiCuS2 | 47.908 | 12.798 | 26.786 | 43.305 | 0.342 | 56.917 |
| TiCuSe2 | 42.042 | 8.074 | 21.057 | 30.515 | 0.217 | 45.768 |
| TiCuTe2 | 31.035 | 4.755 | 14.538 | 17.521 | 0.396 | 30.307 |
| Structure | Atomic magnetic moment/µB | MAE/eV | Tc/K | |||
|---|---|---|---|---|---|---|
| Ti | Cu | X | ||||
| TiCuS2 | 0.916 | -0.029 | -0.030 | 1.000 | 9.071 | 140 |
| TiCuSe2 | 0.941 | -0.030 | -0.032 | 1.000 | 79.832 | 250 |
| TiCuTe2 | 0.834 | -0.007 | -0.033 | 1.000 | 109.25 | 180 |
表3 所有结构的原子磁矩、总磁矩Mt、磁各向异性能MAE和居里温度Tc
Table 3 Atomic magnetic moments, total magnetic moments Mt, magnetic anisotropy energy MAE, and Curie temperature Tc of all structures
| Structure | Atomic magnetic moment/µB | MAE/eV | Tc/K | |||
|---|---|---|---|---|---|---|
| Ti | Cu | X | ||||
| TiCuS2 | 0.916 | -0.029 | -0.030 | 1.000 | 9.071 | 140 |
| TiCuSe2 | 0.941 | -0.030 | -0.032 | 1.000 | 79.832 | 250 |
| TiCuTe2 | 0.834 | -0.007 | -0.033 | 1.000 | 109.25 | 180 |
| [1] | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200. |
| [2] | BOLOTIN K I, SIKES K J, JIANG Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146(9/10): 351-355. |
| [3] | HUANG Y L, CHEN W, WEE A T S. Two-dimensional magnetic transition metal chalcogenides[J]. SmartMat, 2021, 2(2): 139-153. |
| [4] | MAK K F, LEE C G, HONE J, et al. Atomically thin MoS2: a new direct-gap semiconductor[J]. Physical Review Letters, 2010, 105(13): 136805. |
| [5] | RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150. |
| [6] | DEAN C R, YOUNG A F, MERIC I, et al. Boron nitride substrates for high-quality graphene electronics[J]. Nature Nanotechnology, 2010, 5(10): 722-726. |
| [7] | DONG R H, ZHANG T, FENG X L. Interface-assisted synthesis of 2D materials: trend and challenges[J]. Chemical Reviews, 2018, 118(13): 6189-6235. |
| [8] | GEIM A K, GRIGORIEVA I V. Van der waals heterostructures[J]. Nature, 2013, 499(7459): 419-425. |
| [9] | YANKOWITZ M, XUE J M, CORMODE D, et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride[J]. Nature Physics, 2012, 8(5): 382-386. |
| [10] | WANG M K, ZHU J, ZI Y, et al. Functional two-dimensional black phosphorus nanostructures towards next-generation devices[J]. Journal of Materials Chemistry A, 2021, 9(21): 12433-12473. |
| [11] | KAUL A B. Two-dimensional layered materials: structure, properties, and prospects for device applications[J]. Journal of Materials Research, 2014, 29(3): 348-361. |
| [12] | FENG Y, CHEN H, WU B. Reconfigurable diode effect and giant tunnel magnetoresistance ratio in magnetic tunnel junctions based on spin gapless semiconductor and half metallic Heusler alloy[J]. Applied Surface Science, 2025, 689: 162551. |
| [13] | LI S S, HU S J, JI W X, et al. Emergence of ferrimagnetic half-metallicity in two-dimensional MXene Mo3N2F2 [J]. Applied physics letters, 2017, (20): 111. |
| [14] | ZHOU S S, WANG R Y, HAN J B, et al. Ultrathin non-van der Waals magnetic rhombohedral Cr2S3: space-confined chemical vapor deposition synthesis and Raman scattering investigation[J]. Advanced Functional Materials, 2019, 29(3): 1805880. |
| [15] | WANG B, ZHANG Y H, MA L, et al. MnX (X = P, As) monolayers: a new type of two-dimensional intrinsic room temperature ferromagnetic half-metallic material with large magnetic anisotropy[J]. Nanoscale, 2019, 11(10): 4204-4209. |
| [16] | ZENG H H, JIN S, WANG J H, et al. Ferromagnetic half-metal with high Curie temperature: Janus Mn2PAs monolayer[J]. Journal of Materials Science, 2021, 56(23): 13215-13226. |
| [17] | WEI X P, DU L L, MENG J L, et al. Two-dimensional ferromagnetic semiconductor Cr2XP: first-principles calculations and Monte Carlo simulations[J]. Physical Chemistry Chemical Physics, 2024, 26(33): 22099-22111. |
| [18] | SONG X L, HUANG W C, WANG X F, et al. Two-dimensional single-layer ferrimagnetic TiMnX2 and TiCoX2: first-principles calculations and Monte Carlo simulations[J]. Physica B: Condensed Matter, 2025, 698: 416740. |
| [19] | KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. |
| [20] | KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775. |
| [21] | WANG Y Q, LI G L. Dispersion relation reconstruction for 2D photonic crystals based on polynomial interpolation[J]. Journal of Computational Physics, 2024, 498: 112659. |
| [22] | WANG V, XU N, LIU J C, et al. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code[J]. Computer Physics Communications, 2021, 267: 108033. |
| [23] | JIANG S C, YANG K S. High-throughput design of perpendicular magnetic anisotropy at quaternary Heusler and MgO interfaces[J]. NPJ Computational Materials, 2023, 9: 123. |
| [24] | BORN M, HUANG K. Dynamical theory of crystal lattices[M]. New York: Oxford University Press, 1954. |
| [25] | MOUHAT F, COUDERT F X. Necessary and sufficient elastic stability conditions in various crystal systems[J]. Physical Review B, 2014, 90(22): 224104. |
| [26] | JASIUKIEWICZ C, PASZKIEWICZ T, WOLSKI S. Fourth-rank tensors of [[V2]2]-type and elastic material constants for 2D crystals[J]. Physica Status Solidi (b), 2008, 245(3): 557-561. |
| [27] | FRANTSEVICH I N, VORONOV F F, BOKUTA S A. Elastic constants and elastic moduli of metals and insulators hand book[M]. Kiev: Naukova Dumka, 1983. |
| [28] | LUTFALLA S, SHAPOVALOV V, BELL A T. Calibration of the DFT/GGA+U method for determination of reduction energies for transition and rare earth metal oxides of Ti, V, Mo, and Ce[J]. Journal of Chemical Theory and Computation, 2011, 7(7): 2218-2223. |
| [29] | GONG C, ZHANG X. Two-dimensional magnetic crystals and emergent heterostructure devices[J]. Science, 2019, 363(6428): eaav4450. |
| [30] | KIM J, KIM K W, KIM B, et al. Exploitable magnetic anisotropy of the two-dimensional magnet CrI3 [J]. Nano Letters, 2020, 20(2): 929-935. |
| [31] | GODDARD P A, SINGLETON J, SENGUPTA P, et al. Experimentally determining the exchange parameters of quasi-two-dimensional Heisenberg magnets[J]. New Journal of Physics, 2008, 10(8): 083025. |
| [32] | CHAKRAVARTY S, HALPERIN B I, NELSON D R. Two-dimensional quantum Heisenberg antiferromagnet at low temperatures[J]. Physical Review B, 1989, 39(4): 2344-2371. |
| [33] | BERGQVIST L, ERIKSSON O, BERGMAN A, et al. Atomistic spin dynamics: foundations and applications[M]. Oxford: Oxford University Press, 2017. |
| [34] | EVANS R L, FAN W J, CHUREEMART P, et al. Atomistic spin model simulations of magnetic nanomaterials[J]. Journal of Physics: Condensed Matter, 2014, 26(10): 103202. |
| [35] | DUNN W L. Exploring Monte Carlo methods[M]. Amsterdam Boston: Elsevier/Academic Press, 2011. |
| [36] | QVARNGRD D, HENELIUS P. Classical spin models and basic magnetic interactions on 1/1-approximant crystals[EB/OL]. Arxiv, 2023. DOI: 10.48550/arXiv.2311.03781 . |
| [1] | 梁永福, 杨豫萍, 程学瑞. 全无机钙钛矿铯锡溴的光学性质研究[J]. 人工晶体学报, 2026, 55(1): 103-110. |
| [2] | 孔家栩, 林雪玲, 潘凤春. 剪切应变对Mn掺杂MoS2电子结构和光学性质影响的理论研究[J]. 人工晶体学报, 2026, 55(1): 128-141. |
| [3] | 冷昊宁, 孙霄霄, 穆柏旭, 宁丽娜. KNbO3高压下相变行为的第一性原理研究[J]. 人工晶体学报, 2025, 54(9): 1584-1592. |
| [4] | 秦纪龙, 李向远, 张璐璐, 刘建新, 李瑞. 非化学计量比氧化钨(WO3-x)催化甲烷氧化制甲醇反应的第一性原理研究[J]. 人工晶体学报, 2025, 54(8): 1441-1453. |
| [5] | 王淳, 王坤, 宋相满, 任林, 张浩. 共掺杂β-Ga2O3导电性质第一性原理研究[J]. 人工晶体学报, 2025, 54(8): 1426-1432. |
| [6] | 莫秋燕, 吴家隐, 荆涛. Pt修饰AlN单层对C2H6和C6H6吸附和气敏特性的第一性原理研究[J]. 人工晶体学报, 2025, 54(6): 1050-1060. |
| [7] | 刘劲松, 沈露, 任龙军, 黄希忠. 通过缺陷和应变工程控制Janus MoSSe的析氢反应[J]. 人工晶体学报, 2025, 54(6): 1034-1041. |
| [8] | 任龙军, 柴什虎, 王付远, 姜萍. 具有超高载流子迁移率单层C2B6的预测[J]. 人工晶体学报, 2025, 54(5): 850-856. |
| [9] | 崔健, 和志豪, 丁家福, 王云杰, 万俯宏, 李佳郡, 苏欣. 含d10电子构型钨酸盐结构与性能关系的第一性原理研究[J]. 人工晶体学报, 2025, 54(5): 841-849. |
| [10] | 解忧, 肖潇飒, 姜宁宁, 张涛. 二维BC6N/BN横向异质结的电学输运性质研究[J]. 人工晶体学报, 2025, 54(5): 825-831. |
| [11] | 闵月淇, 谢文钦, 谢亮, 安康. Pd掺杂调控CsPbX3(X=Cl,Br,I)光电性能研究[J]. 人工晶体学报, 2025, 54(4): 605-616. |
| [12] | 张家琪, 林雪玲, 田文虎, 马文杰, 张秀, 马小伟, 朱巧萍, 郝睿, 潘凤春. 应变对Si掺杂A-TiO2光学性质影响的第一性原理研究[J]. 人工晶体学报, 2025, 54(4): 617-628. |
| [13] | 李琪, 付博, 余博文, 赵昊, 林娜, 贾志泰, 赵显, 陶绪堂. Al/In掺杂与β-Ga2O3(100)面孪晶相互作用的第一性原理研究[J]. 人工晶体学报, 2025, 54(3): 371-377. |
| [14] | 查显弧, 万玉喜, 张道华. β相氧化镓p型导电研究进展[J]. 人工晶体学报, 2025, 54(2): 177-189. |
| [15] | 郭满意, 吴佳兴, 杨帆, 王超, 王艳杰, 迟耀丹, 杨小天. ε-Ga2O3晶体及其本征缺陷的第一性原理研究[J]. 人工晶体学报, 2025, 54(2): 212-218. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS