[1] MASTRO M A, KURAMATA A, CALKINS J, et al. Perspective: opportunities and future directions for Ga2O3[J]. ECS Journal of Solid State Science and Technology, 2017, 6(5): P356-P359. [2] ZHANG J Y, SHI J L, QI D, et al. Recent progress on the electronic structure, defect, and doping properties of Ga2O3[J]. APL Materials, 2020, 8(2): 020906. [3] REN F, YANG J C, FARES C, et al. Device processing and junction formation needs for ultra-high power Ga2O3 electronics[J]. MRS Communications, 2019, 9(1): 77-87. [4] HIGASHIWAKI M, SASAKI K, MURAKAMI H, et al. Recent progress in Ga2O3 power devices[J]. Semiconductor Science Technology, 2016, 31(3): 034001. [5] 汪正鹏, 张崇德, 孙新雨, 等. 切割角蓝宝石基氧化镓薄膜MOCVD外延及日盲紫外光电探测器制备[J]. 人工晶体学报, 2023, 52(6): 1007-1015. WANG Z P, ZHANG C D, SUN X Y, et al. MOCVD epitaxy of β-Ga2O3 films on off-cut angled sapphire substrates and fabrication of solar-blind ultraviolet photodetector[J]. Journal of Synthetic Crystals, 2023, 52(6): 1007-1015 (in Chinese). [6] 陈绍华, 穆文祥, 张 晋, 等. Ni掺杂β-Ga2O3单晶的光、电特性研究[J]. 人工晶体学报, 2023, 52(8): 1373-1377. CHEN S H, MU W X, ZHANG J, et al. Optical and electrical properties of Ni-doped β-Ga2O3 single crystal[J]. Journal of Synthetic Crystals, 2023, 52(8): 1373-1377 (in Chinese). [7] 李信儒, 侯 童, 马 旭, 等. 斜切角对β-Ga2O3(100)面衬底加工的影响研究[J]. 人工晶体学报, 2023, 52(9): 1570-1575. LI X R, HOU T, MA X, et al. Study on the influence of miscut-angle on the processing of β-Ga2O3(100) plane substrate[J]. Journal of Synthetic Crystals, 2023, 52(9): 1570-1575 (in Chinese). [8] SASAKI K, HIGASHIWAKI M, KURAMATA A, et al. Ga2O3 Schottky barrier diodes fabricated by using single-crystal β-Ga2O3 (010) substrates[J]. IEEE Electron Device Letters, 2013, 34(4): 493-495. [9] DONG P F, ZHANG J C, YAN Q L, et al. 6 kV/3.4 mΩ·cm2 vertical β-Ga2O3 Schottky barrier diode with BV2/Ron,sp performance exceeding 1-D unipolar limit of GaN and SiC[J]. IEEE Electron Device Letters, 2022, 43(5): 765-768. [10] 何云龙, 洪悦华, 王羲琛, 等. 氧化镓材料与功率器件的研究进展[J]. 电子与封装, 2023, 23(1): 69-76. HE Y L, HONG Y H, WANG X C, et al. Progress of gallium oxide materials and power devices[J]. Electronics & Packaging, 2023, 23(1): 69-76 (in Chinese). [11] ROY S, BHATTACHARYYA A, RANGA P, et al. High-k oxide field-plated vertical (001) β-Ga2O3 Schottky barrier diode with Baliga's figure of merit over 1 GW/cm2[J]. IEEE Electron Device Letters, 2021, 42(8): 1140-1143. [12] OTSUKA F, MIYAMOTO H, TAKATSUKA A, et al. Large-size (1.7×1.7 mm2) β-Ga2O3 field-plated trench MOS-type Schottky barrier diodes with 1.2 kV breakdown voltage and 109 high on/off current ratio[J]. Applied Physics Express, 2021, 15: 016501. [13] LI W S, NOMOTO K, HU Z Y, et al. Field-plated Ga2O3 trench Schottky barrier diodes with a BV2/Ron,sp of up to 0.95 GW/cm2[J]. IEEE Electron Device Letters, 2020, 41(1): 107-110. [14] DHARA S, KALARICKAL N K, DHEENAN A, et al. β-Ga2O3 Schottky barrier diodes with 4.1 MV/cm field strength by deep plasma etching field-termination[J/OL]. Applied Physics Letters,2022. DOI: 10.1063/5.6123284. [15] ZHOU H, YAN Q L, ZHANG J C, et al. High-performance vertical β-Ga2O3 Schottky barrier diode with implanted edge termination[J]. IEEE Electron Device Letters, 2019, 40(11): 1788-1791. [16] LIN C H, YUDA Y, WONG M H, et al. Vertical Ga2O3 Schottky barrier diodes with guard ring formed by nitrogen-ion implantation[J]. IEEE Electron Device Letters, 2019, 40(9): 1487-1490. [17] GAO Y Y, LI A, FENG Q, et al. High-voltage β-Ga2O3 Schottky diode with argon-implanted edge termination[J]. Nanoscale Research Letters, 2019, 14(1): 8. [18] LIU H Y, WANG Y G, LV Y J, et al. 10-kV lateral β-Ga2O3 MESFETs with B ion implanted planar isolation[J]. IEEE Electron Device Letters, 2023, 44(7): 1048-1051. [19] ZHANG J Y, YANG Z N, KUANG S L, et al. Electronic structure and surface band bending of Sn-doped β-Ga2O3 thin films studied by X-ray photoemission spectroscopy and ab initiocalculations[J]. Physical Review B, 2024, 110(11): 115120. |