[1] PEARTON S J, YANG J C, CARY P H, et al. A review of Ga2O3 materials, processing, and devices[J]. Applied Physics Reviews, 2018, 5(1): 011301. [2] GREEN A J, SPECK J, XING G, et al. β-Gallium oxide power electronics[J]. APL Materials, 2022, 10(2): 029201. [3] KIM J, PEARTON S J, FARES C, et al. Radiation damage effects in Ga2O3 materials and devices[J]. Journal of Materials Chemistry C, 2019, 7(1): 10-24. [4] PEARTON S, YANG J, CARY IV P H, et al. Radiation damage in Ga2O3[M]. Gallium Oxide. Elsevier, 2019: 313-328. [5] CADENA R M, BALL D R, ZHANG E X, et al. Low-energy ion-induced single-event burnout in gallium oxide Schottky diodes[J]. IEEE Transactions on Nuclear Science, 2023, 70(4): 363-369. [6] ISLAM S, SENARATH A S, FARZANA E, et al. Single-event burnout in verticalβ-Ga2O3 diodes with Pt/PtOx Schottky contacts and high-k field-plate dielectrics[J]. IEEE Transactions on Nuclear Science, 2024, 71(4): 515-521. [7] LI X, JIANG W B, WANG Y G, et al. Single-event burnout in β-Ga2O3 Schottky barrier diode induced by high-energy proton[J]. Applied Physics Letters, 2024, 125(9): 092101. [8] HE S, WEN J P, LIU J Y, et al. The mechanism of degradation and failure in NiO/β-Ga2O3 heterojunction diodes induced by the high-energy ion irradiation[J]. Applied Physics Letters, 2024, 125(16): 162101. [9] HAN Z, JIAN G Z, ZHOU X Z, et al. 2.7 kV low leakage vertical PtOx/β-Ga2O3 Schottky barrier diodes with self-aligned mesa termination[J]. IEEE Electron Device Letters, 2023, 44(10): 1680-1683. [10] MA H Y, WANG W T, CAI Y C, et al. Analysis of single event effects by heavy ion irradiation of Ga2O3 metal-oxide-semiconductor field-effect transistors[J]. Journal of Applied Physics, 2023, 133(8): 085701. [11] YU C H, GUO H M, LIU Y, et al. Simulation study on single-event burnout in field-plated Ga2O3 MOSFETs[J]. Microelectronics Reliability, 2023, 149: 115227. [12] WITULSKI A F, ARSLANBEKOV R, RAMAN A, et al. Single-event burnout of SiC junction barrier Schottky diode high-voltage power devices[J]. IEEE Transactions on Nuclear Science, 2018, 65(1): 256-261. [13] ABBATE C, BUSATTO G, COVA P, et al. Thermal damage in SiC Schottky diodes induced by SE heavy ions[J]. Microelectronics Reliability, 2014, 54(9/10): 2200-2206. [14] ZHOU X T, TANG Y, JIA Y P, et al. Single-event effects in SiC double-trench MOSFETs[J]. IEEE Transactions on Nuclear Science, 2019, 66(11): 2312-2318. [15] BI J X, WANG Y, WU X, et al. Single-event burnout hardening method and evaluation in SiC power MOSFET devices[J]. IEEE Transactions on Electron Devices, 2020, 67(10): 4340-4345. [16] SCHEICK L, SELVA L, BECKER H. Displacement damage-induced catastrophic second breakdown in silicon carbide Schottky power diodes[J]. IEEE Transactions on Nuclear Science, 2004, 51(6): 3193-3200. [17] AI W S, XU L J, NAN S, et al. Radiation damage in β-Ga2O3 induced by swift heavy ions[J]. Japanese Journal of Applied Physics, 2019, 58(12): 120914. [18] MIZUTA E, KUBOYAMA S, ABE H, et al. Investigation of single-event damages on silicon carbide (SiC) power MOSFETs[J]. IEEE Transactions on Nuclear Science, 2014, 61(4): 1924-1928. [19] KUBOYAMA S, KAMEZAWA C, IKEDA N, et al. Anomalous charge collection in silicon carbide Schottky barrier diodes and resulting permanent damage and single-event burnout[J]. IEEE Transactions on Nuclear Science, 2006, 53(6): 3343-3348. |