Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (9): 1534-1546.DOI: 10.16553/j.cnki.issn1000-985x.2025.0053
• Research Articles • Previous Articles Next Articles
LI Xiaochuan1(
), MA Sanbao2, ZHOU Fengzi3, REN Yongpeng1, MA Wuxiang2, MEI Haotian2
Received:2025-03-18
Online:2025-09-20
Published:2025-09-23
CLC Number:
LI Xiaochuan, MA Sanbao, ZHOU Fengzi, REN Yongpeng, MA Wuxiang, MEI Haotian. Numerical Simulation for Pipeline Problem of Highly Sb-Doped Czochralski Silicon Single Crystal[J]. Journal of Synthetic Crystals, 2025, 54(9): 1534-1546.
| Material | Thermal conductivity/(W·K-1·m-1) | Specific heat/(J·K-1·kg-1) | Density/(kg·m-3) | Emissivity |
|---|---|---|---|---|
| Si (melt) | 133 | 915 | 3 194-0.370 1T | 0.3 |
| Si (crystal) | 140.53-0.293T+3.393×10-4T2-2.048×10-7T3+5.97×10-11T4-6.655×10-15T5 | 1 000 | 2 330 | 0.901 6-2.620 8×10-4T |
| Quartz | 4 | 1 232 | 2 650 | 0.85 |
| Graphite | 146.888 5-0.176 87T+0.000 127T2-4.699×10-8T3+6.665×10-12T4 | 2 019 | 2 300 | 0.8 |
| Felt | 0.03(473 K);0.06(673 K);0.07(873 K);0.09(1 073 K);0.12(1 273 K);0.17(1 473 K) | 1 047 | 200 | 0.8 |
| Ar | 0.01+2.5×10-5T | 521 | — | — |
| Steel | 15 | — | — | 0.45 |
Table 1 Physical parameters of materials used in simulation
| Material | Thermal conductivity/(W·K-1·m-1) | Specific heat/(J·K-1·kg-1) | Density/(kg·m-3) | Emissivity |
|---|---|---|---|---|
| Si (melt) | 133 | 915 | 3 194-0.370 1T | 0.3 |
| Si (crystal) | 140.53-0.293T+3.393×10-4T2-2.048×10-7T3+5.97×10-11T4-6.655×10-15T5 | 1 000 | 2 330 | 0.901 6-2.620 8×10-4T |
| Quartz | 4 | 1 232 | 2 650 | 0.85 |
| Graphite | 146.888 5-0.176 87T+0.000 127T2-4.699×10-8T3+6.665×10-12T4 | 2 019 | 2 300 | 0.8 |
| Felt | 0.03(473 K);0.06(673 K);0.07(873 K);0.09(1 073 K);0.12(1 273 K);0.17(1 473 K) | 1 047 | 200 | 0.8 |
| Ar | 0.01+2.5×10-5T | 521 | — | — |
| Steel | 15 | — | — | 0.45 |
| Number | Scheme | V/(mm·min-1) | M/(r·min-1) | N/(r·min-1) | F/slm |
|---|---|---|---|---|---|
| 1 | Decreasing V | 0.2, 0.3, 0.4 | 15 | -8 | 60 |
| 2 | Increasing V | 0.7, 0.9, 1.1 | 15 | -8 | 60 |
| 3 | Increasing V and F | 0.7, 0.9 | 15 | -8 | 65,70 |
| 4 | Increasing M, decreasing N | 0.5 | 17, 19, 21 | -6, -7 | 60 |
| 5 | Increasing V and M, decreasing N | 0.7, 0.9, 1.1 | 17, 19, 21 | -6, -7 | 60 |
Table 2 Schemes of simulation for pipeline problem of highly Sb-doped silicon single crystal
| Number | Scheme | V/(mm·min-1) | M/(r·min-1) | N/(r·min-1) | F/slm |
|---|---|---|---|---|---|
| 1 | Decreasing V | 0.2, 0.3, 0.4 | 15 | -8 | 60 |
| 2 | Increasing V | 0.7, 0.9, 1.1 | 15 | -8 | 60 |
| 3 | Increasing V and F | 0.7, 0.9 | 15 | -8 | 65,70 |
| 4 | Increasing M, decreasing N | 0.5 | 17, 19, 21 | -6, -7 | 60 |
| 5 | Increasing V and M, decreasing N | 0.7, 0.9, 1.1 | 17, 19, 21 | -6, -7 | 60 |
| Number | Scheme | Optimal parameter | H(center)/mm | G(center)/(K·m-1) | V/G (center)/ (cm2·min-1·K-1) | GR (edge)/(K·m-1) | U/ (m·s-1) | b/mm | Heater power/kW |
|---|---|---|---|---|---|---|---|---|---|
| 1 | Present | — | -9.0 | -170 | 0.001 9 | 5 | 0.007 8 | 88 | 64.42 |
| 4 | Increasing M, decreasing N | M=19 r/min,N=-7 r/min | -2.5 | -200 | 0.001 6 | -75 | 0.016 0 | — | 64.54 |
| 5 | Increasing V and M, decreasing N | V=0.7 mm/min,M=17 r/min,N=-7 r/min | 2.0 | -200 | 0.002 1 | -75 | 0.012 3 | — | 63.32 |
Table 3 Perfect parameters and results for different schemes
| Number | Scheme | Optimal parameter | H(center)/mm | G(center)/(K·m-1) | V/G (center)/ (cm2·min-1·K-1) | GR (edge)/(K·m-1) | U/ (m·s-1) | b/mm | Heater power/kW |
|---|---|---|---|---|---|---|---|---|---|
| 1 | Present | — | -9.0 | -170 | 0.001 9 | 5 | 0.007 8 | 88 | 64.42 |
| 4 | Increasing M, decreasing N | M=19 r/min,N=-7 r/min | -2.5 | -200 | 0.001 6 | -75 | 0.016 0 | — | 64.54 |
| 5 | Increasing V and M, decreasing N | V=0.7 mm/min,M=17 r/min,N=-7 r/min | 2.0 | -200 | 0.002 1 | -75 | 0.012 3 | — | 63.32 |
| [1] | 佘思明. 重掺锑硅单晶管道问题的研究[J]. 中南矿冶学院学报(自然科学版), 1979, 10(2): 31-38. |
| SHE S M. Study of “core” in Si single crystal with heavily doped Sb[J]. Journal of Central South University (Science and Technology), 1979, 10(2): 31-38 (in Chinese). | |
| [2] | 李 昆. 锗单晶内低阻管道现象探讨[J]. 云南冶金, 1998, 27(增刊): 50-52+130. |
| LI K. A study on the low-resistive pipe inside single germanium crystal[J]. Yunnan Metallurgy, 1998, 27(Supplement): 50-52+130 (in Chinese). | |
| [3] | ABE T. The growth of Si single crystals from the melt and impurity incorporation mechanisms[J]. Journal of Crystal Growth, 1974, 24: 463-467. |
| [4] | VORONKOV V V, DAI B, KULKARNI M S. 3.03 fundamentals and engineering of the Czochralski growth of semiconductor silicon crystals[J]. Comprehensive Semiconductor Science and Technology, 2011, 3: 81-169. |
| [5] | HURLE D T J, RUDOLPH P. A brief history of defect formation, segregation, faceting, and twinning in melt-grown semiconductors[J]. Journal of Crystal Growth, 2004, 264(4): 550-564. |
| [6] | BRICE J C. Facet formation during crystal pulling[J]. Journal of Crystal Growth, 1970, 6(2): 205-206. |
| [7] | FROLOV A A, SEMENOV V N, USTELEMOV S V, alet, Influence of growth rate on the side facets of FeGe2 crystals grown by the Czochralski method[J]. Kristallografiya, 1981, 26(2): 378-380. |
| [8] | VORONKOV V V. Supercooling on the face arising at the rounded front of crystallization[J]. Kristallografiya, 1972, 17: 909-917. |
| [9] | VORONKOV V V. Processes at the boundary of a crystallization front[J]. Kristallografiya, 1974, 19: 922-929. |
| [10] | KRAUZE A, VIRBULIS J, ZITZELSBERGER S, et al. 3D modeling of growth ridge and edge facet formation in 〈100〉 floating zone silicon crystal growth process[J]. Journal of Crystal Growth, 2019, 520: 68-71. |
| [11] | STOCKMEIER L, KRANERT C, FISCHER P, et al. Analysis of the geometry of the growth ridges and correlation to the thermal gradient during growth of silicon crystals by the Czochralski-method[J]. Journal of Crystal Growth, 2019, 515: 26-31. |
| [12] | KRANERT C, RAMING G, MILLER A, et al. Facet growth and geometry of the growth ridge during dynamic Czochralski processes[J]. Journal of Crystal Growth, 2021, 568: 126174. |
| [13] | VORONKOV V V. Super-cooling at a facet located at a curved crystal-melt interface[J]. Soviet Physics-Crystallography, 1973, 17: 807-814. |
| [14] | VORONKOV V V. Mass transfer on the crystal surface near the melt boundary and its effect on the shape of the growing crystal[J]. Kristallografiya, 1978, 23: 249-256. |
| [15] | TILLER W A, JACKSON K A, RUTTER J W, et al. The redistribution of solute atoms during the solidification of metals[J]. Acta Metallurgica, 1953, 1(4): 428-437. |
| [16] | HURLE D T J. Constitutional supercooling during crystal growth from stirred melts: I theoretical[J]. Solid-State Electronics, 1961, 3(1): 37-44. |
| [17] | CHIOU H D. Antimony concentration limitation in dislocation-free CZ silicon crystals[J]. Journal of the Electrochemical Society, 2005, 152(4): G295. |
| [18] | MUKAIYAMA Y, FUKUI Y, TAISHI T, et al. Numerical modeling and evaluation of constitutional supercooling during silicon single crystal growth by Cz method[C]// The 8th International Symposium on Advanced Science and Technology of Silicon Materials, 2022. |
| [19] | MUKAIYAMA Y, ARTEMYEV V V, SUEOKA K. Numerical analysis of constitutional supercooling in heavily doped silicon crystals grown using the Czochralski method[J]. Journal of Crystal Growth, 2022, 597: 126844. |
| [20] | GRUNER S, KRANERT C, JAUß T, et al. Investigation of facetted growth in heavily doped silicon crystals grown in mirror furnaces[J]. Crystals, 2022, 12(11): 1575. |
| [21] | KRANERT C, WIMMER P, FRIEDRICH J, et al. Facet growth kinetics and diameter fluctuations in molten zone Si crystal growth[J]. Journal of Crystal Growth, 2025, 652: 128024. |
| [22] | SABANSKIS A, VIRBULIS J. Modelling of thermal field and point defect dynamics during silicon single crystal growth using CZ technique[J]. Journal of Crystal Growth, 2019, 519: 7-13. |
| [23] | MUKAIYAMA Y, SUEOKA K, MAEDA S, et al. Numerical analysis of effect of thermal stress depending on pulling rate on behavior of intrinsic point defects in large-diameter Si crystal grown by Czochralski method[J]. Journal of Crystal Growth, 2020, 531: 125334. |
| [24] | SUEWAKA R, NAKAMURA K. Effect of thermal stress on point defect behavior during single crystal Si growth[J]. Japanese Journal of Applied Physics, 2020, 59(1): 015502. |
| [25] | DEZFOLI A R A. Czochralski (CZ) process modification with cooling tube in the response to market Global silicon shortage[J]. Journal of Crystal Growth, 2023, 610: 127170. |
| [26] | ANSARI DEZFOLI A R, ADABAVAZEH Z. Adjustment of oxygen transport phenomena for Czochralski silicon crystal growth[J]. Heliyon, 2024, 10(8): e29346. |
| [27] | MUKAIYAMA Y, FUKUI Y, TAISHI T, et al. Evaluation of numerical simulation of constitutional supercooling during heavily boron-doped silicon crystal growth using Cz method[J]. Journal of Crystal Growth, 2023, 619: 127333. |
| [28] | 张 晶, 刘 丁. ϕ300 mm直拉硅单晶生长过程中的变晶现象及其影响因素[J]. 人工晶体学报, 2022, 7: 1186-1192. |
| ZHANG J, LIU D. Crystalloblast and its affecting factors in ϕ300 mm Czochralski silicon single crystal growth[J]. Journal of Synthetic Crystals, 2022, 7:1186-1192 (in Chinese). | |
| [29] | 蒙 茜. 磁控作用下硅单晶生长三维热场数值模拟与工艺参数分析[D]. 西安: 西安理工大学, 2024. |
| MENG X. Numerical simulations of three-dimensional thermal field and analysis of process parameters for silicon single crystal under magnetic control[D]. Xi'an: Xi'an University of Technology, 2024 (in Chinese). | |
| [30] | VORONKOV V V. The mechanism of swirl defects formation in silicon[J]. Journal of Crystal Growth, 1982, 59(3): 625-643. |
| [31] | MUIŽNIEKS A, RAMING G, MÜHLBAUER A, et al. Stress-induced dislocation generation in large FZ- and CZ-silicon single crystals: numerical model and qualitative considerations[J]. Journal of Crystal Growth, 2001, 230(1/2): 305-313. |
| [32] | DEZFOLI A R A, MAURYA S N, ADABAVAZEH Z, et al. Process parameter optimization in Czochralski growth of silicon ingots: a Monte Carlo-finite element coupled model[J]. The International Journal of Advanced Manufacturing Technology, 2025, 137(5): 2935-2946. |
| [33] | ROST H J, BUCHOVSKA I, DADZIS K, et al. Thermally stimulated dislocation generation in silicon crystals grown by the float-zone method[J]. Journal of Crystal Growth, 2020, 552: 125842. |
| [34] | KUMAR M A, SRINIVASAN M, RAMASAMY P. Numerical simulation and global heat transfer computations of thermoelastic stress in Cz silicon crystal[J]. International Journal of Materials Research, 2019, 110(10): 911-919. |
| [1] | LI Jiancheng, ZHONG Zeqi, WANG Junlei, LI Zaoyang, WEN Yong, WANG Lei, LIU Lijun. Control of Oxygen Content During the Growth of Single Crystal Silicon by Czochralski Method [J]. Journal of Synthetic Crystals, 2025, 54(9): 1525-1533. |
| [2] | QI Chao, LI Dengnian, LI Zaoyang, YANG Yao, ZHONG Zeqi, LIU Lijun. Power Consumption and Heat Transfer Paths in Czochralski Silicon Crystal Growth under the Influence of Heat Shield [J]. Journal of Synthetic Crystals, 2025, 54(6): 949-959. |
| [3] | YANG Wenwen, LU Wei, XIE Hui, LIU Gang, LYU Xinyu, BAI Yihan, LI Chenhui, PAN Jiaoqing, ZHAO Youwen, SHEN Guiying. Growth and Performance of Low-Dislocation 6-Inch GaSb Single Crystal [J]. Journal of Synthetic Crystals, 2025, 54(5): 784-792. |
| [4] | JIANG Bowen, JI Weiguo, ZHANG Lu, FAN Qiming, PAN Mingyan, HUANG Haotian, QI Hongji. Flow Field Symmetry of β-Ga2O3 Crystal Growth by EFG [J]. Journal of Synthetic Crystals, 2025, 54(3): 378-385. |
| [5] | YIN Changshuai, MENG Biao, LIANG Kang, CUI Hanwen, LIU Sheng, ZHANG Zhaofu. Comparative Study on Thermal Field of Ga2O3 Single Crystal Growth Simulated by Different Thermal Radiation Models [J]. Journal of Synthetic Crystals, 2025, 54(3): 386-395. |
| [6] | LIN Haixin, GAO Dedong, WANG Shan, ZHANG Zhenzhong, AN Yan, ZHANG Wenyong. Multi-Physics Field Modeling and Optimization of Large-Size Czochralski Silicon Single Crystal Growth [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 17-33. |
| [7] | XU Wanli, GAN Yunhai, LI Yuewen, LI Bin, ZHENG Youdou, ZHANG Rong, XIU Xiangqian. High Rate HVPE Growth of High Uniformity 6-Inch GaN Thick Film [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 11-16. |
| [8] | CHENG Youliang, DU Huibin, ZHANG Zhongbao, WANG Kai. Optimization of Electronic Transport Model and Device Performance in Tin Dioxide-Based Dye-Sensitized Solar Cells [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(9): 1629-1639. |
| [9] | YU Hang, ZHAO Qi, QI Xiaofang, MA Wencheng, XU Yongkuan, HU Zhanggui. Effect of Internal Radiation Heat Transfer on the Thermal Stress in Growing Ti∶Sapphire Crystal by Heat Exchanger Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(7): 1212-1221. |
| [10] | SHI Yufeng, WANG Pengfei, MU Honghe, SU Liangbi. Numerical Simulation Investigation of Size Effect on Calcium Fluoride Crystals Grown by Vertical Bridgman Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(6): 973-981. |
| [11] | AI Jiaxin, WAN Hongping, QIAN Junbing, WEI Hua. Influence of VGF Indium Phosphide Single Crystal Furnace Heater on the Thermal Field Distribution in the Furnace [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2024, 53(5): 781-791. |
| [12] | XU Zheren, ZHANG Jijun, CAO Xiangzhi, LU Wei, LIU Hao, QI Yongwu. Study on Thermal Field of Growth System of CdZnTe Crystal Growth by Traveling Heater Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(9): 1589-1598. |
| [13] | SUI Zhanren, XU Lingbo, CUI Can, WANG Rong, YANG Deren, PI Xiaodong, HAN Xuefeng. Research Progress on Numerical Simulation of Single Crystal Silicon Carbide Prepared by Top-Seeded Solution Growth Method [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(6): 1067-1085. |
| [14] | HUANG Xiaokun, YANG Aijun, LI Jiansheng, JIANG Linqin, QIU Yu. Performance of Perovskite Solar Cells Based on CuS Hole Transport Materials [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(3): 485-492. |
| [15] | WANG Miaomiao, ZHANG Chuancheng, REN Hao, TANG Xubing, DING Shoujun, ZOU Yong, HUANG Hulin. Analysis of Convective Instability in Melt of Floating Zone Crystal Growth with Different Aspect Ratio [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(2): 220-228. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS