人工晶体学报 ›› 2025, Vol. 54 ›› Issue (3): 470-490.DOI: 10.16553/j.cnki.issn1000-985x.2024.0315
瞿振宇1, 徐文慧1, 江昊东2, 梁恒硕1, 赵天成1, 谢银飞3, 孙华锐3, 邹新波2, 游天桂1, 齐红基4,5, 韩根全6, 欧欣1
收稿日期:
2024-12-13
出版日期:
2025-03-15
发布日期:
2025-04-03
通信作者:
徐文慧,博士,助理研究员。E-mail:xuwh@mail.sim.ac.cn; 徐文慧,博士,中国科学院上海微系统与信息技术研究所助理研究员。主要从事高导热氧化镓异质集成技术研究,在IEDM、Appl Mater Interfaces、Fundamental Res、IEEE EDL、Appl Phys Lett等会议期刊发表论文30余篇;申请专利30余件,已授权中、美、日专利共15件。欧 欣,博士,研究员。E-mail:ouxin@mail.sim.ac.cn; 欧 欣,博士生导师,中国科学院上海微系统与信息技术研究所硅基材料与集成器件实验室主任,二级研究员。主要从事基于“万能离子刀”技术的异质集成XOI材料与器件研究。先后发表SCI/EI论文近200篇,其中125篇以第一/通信作者发表在Nature、Nature Com、PRL、Adv Mater、Nano Lett、Light、Optica、Appl Phys Rev等著名期刊及IEEE顶会包括IEDM、IMS、MEMS、IUS、EDTM等;参著三本英文专著和一本中文专著;申请专利230余件,已授权100余件,成果转化44件。
作者简介:
瞿振宇(1999—),男,江苏省人,博士研究生。E-mail:zyqu@mail.sim.ac.cn
基金资助:
QU Zhenyu1, XU Wenhui1, JIANG Haodong2, LIANG Hengshuo1, ZHAO Tiancheng1, XIE Yinfei3, SUN Huarui3, ZOU Xinbo2, YOU Tiangui1, QI Hongji4,5, HAN Genquan6, OU Xin1
Received:
2024-12-13
Online:
2025-03-15
Published:
2025-04-03
摘要: 超宽禁带氧化镓在高功率和射频器件领域显示出巨大发展潜力。然而,氧化镓固有的极低热导率和p型掺杂困难问题限制了其器件性能和结构设计。异质集成是突破单一材料性能极限,变革提升器件性能的关键技术。本文综述了异质外延、机械剥离和离子束剥离转移三种氧化镓异质集成技术的最新研究进展,重点对比分析不同集成技术在材料质量、电学和热学特性及器件性能等方面的优缺点,并针对衬底种类、界面成键方式、过渡层厚度对纵向散热和电子输运的影响进行探讨。同时,本文对当前氧化镓异质集成技术所面临的挑战进行分析,并对氧化镓异质集成技术未来的发展趋势进行展望,旨在唤起国内氧化镓异质集成衬底相关研究,推动氧化镓异质集成器件开发,加快推进氧化镓材料和器件产业化应用。
中图分类号:
瞿振宇, 徐文慧, 江昊东, 梁恒硕, 赵天成, 谢银飞, 孙华锐, 邹新波, 游天桂, 齐红基, 韩根全, 欧欣. 氧化镓异质衬底集成技术研究进展[J]. 人工晶体学报, 2025, 54(3): 470-490.
QU Zhenyu, XU Wenhui, JIANG Haodong, LIANG Hengshuo, ZHAO Tiancheng, XIE Yinfei, SUN Huarui, ZOU Xinbo, YOU Tiangui, QI Hongji, HAN Genquan, OU Xin. Research Progress on Heterogeneous Substrate Integration Technology for Gallium Oxide[J]. Journal of Synthetic Crystals, 2025, 54(3): 470-490.
[1] FLOSFIA INC. Corporate profile [EB/OL]. [2020-09-01].https://flosfia.com/struct/wp-content/uploads/Corporate-Profile_English_2020-Sep_Web-Page_Final.pdf. [2] HUDGINS J L, SIMIN G S, SANTI E, et al. An assessment of wide bandgap semiconductors for power devices[J]. IEEE Transactions on Power Electronics, 2003, 18(3): 907-914. [3] LUCIA O, SARNAGO H, BURDIO J M. Design of power converters for induction heating applications taking advantage of wide-bandgap semiconductors[J]. COMPEL- the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2017, 36(2): 483-488. [4] NEUDECK P G, OKOJIE R S, CHEN L Y. High-temperature electronics—a role for wide bandgap semiconductors?[J]. Proceedings of the IEEE, 2002, 90(6): 1065-1076. [5] ZHANG Y H, PALACIOS T. (ultra)wide-bandgap vertical power FinFETs[J]. IEEE Transactions on Electron Devices, 2020, 67(10): 3960-3971. [6] BALIGA B J. Semiconductors for high-voltage, vertical channel field-effect transistors[J]. Journal of Applied Physics, 1982, 53(3): 1759-1764. [7] SHE X, HUANG A Q, LUCÍA Ó, et al. Review of silicon carbide power devices and their applications[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8193-8205. [8] ZHANG Y H, ZUBAIR A, LIU Z H, et al. GaN FinFETs and trigate devices for power and RF applications: review and perspective[J]. Semiconductor Science Technology, 2021, 36(5): 054001. [9] JONES E A, WANG F F, COSTINETT D. Review of commercial GaN power devices and GaN-based converter design challenges[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(3): 707-719. [10] ALVES L F S, GOMES R C M, LEFRANC P, et al. SiC power devices in power electronics: an overview[C]//2017 Brazilian Power Electronics Conference (COBEP). November 19-22, 2017, Juiz de Fora, Brazil. IEEE, 2017: 1-8. [11] RUPP R, LASKA T, HÄBERLEN O, et al. Application specific trade-offs for WBG SiC, GaN and high end Si power switch technologies[C]//2014 IEEE International Electron Devices Meeting. December 15-17, 2014, San Francisco, CA, USA. IEEE, 2014: 2.3.1-2.3.4. [12] UMEZAWA H. Recent advances in diamond power semiconductor devices[J]. Materials Science in Semiconductor Processing, 2018, 78: 147-156. [13] DONATO N, ROUGER N, PERNOT J, et al. Diamond power devices: state of the art, modelling, figures of merit and future perspective[J]. Journal of Physics D Applied Physics, 2020, 53(9): 093001. [14] UMEZAWA H, NAGASE M, KATO Y, et al. High temperature application of diamond power device[J]. Diamond and Related Materials, 2012, 24: 201-205. [15] ZHAO S, CONNIE A T, DASTJERDI M T, et al. Aluminum nitride nanowire light emitting diodes: breaking the fundamental bottleneck of deep ultraviolet light sources[J]. Scientific Reports, 2015, 5: 8332. [16] SCHRECK M. Growth of single crystal diamond wafers for future device applications[M]. Wide Bandgap Semiconductors for Power Electronics. 2021: 583-631. [17] PEARTON S J, YANG J C, CARY P H, et al. A review of Ga2O3 materials, processing, and devices[J]. Applied Physics Reviews, 2018, 5(1): 011301. [18] HIGASHIWAKI M, SASAKI K, MURAKAMI H, et al. Recent progress in Ga2O3 power devices[J]. Semiconductor Science and Technology, 2016, 31(3): 034001. [19] WONG M H, HIGASHIWAKI M. Vertical β-Ga2O3 power transistors: a review[J]. IEEE Transactions on Electron Devices, 2020, 67(10): 3925-3937. [20] ZHANG J C, DONG P F, DANG K, et al. Ultra-wide bandgap semiconductor Ga2O3 power diodes[J]. Nature Communications, 2022, 13(1): 3900. [21] TADJER M J. Toward gallium oxide power electronics[J]. Science, 2022, 378(6621): 724-725. [22] PEARTON S J, REN F, TADJER M, et al. Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETs[J]. Journal of Applied Physics, 2018, 124(22): 220901. [23] HIGASHIWAKI M, SASAKI K, KURAMATA A, et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates[J]. Applied Physics Letters, 2012, 100(1): 013504. [24] HIGASHIWAKI M, MURAKAMI H, KUMAGAI Y, et al. Current status of Ga2O3 power devices[J]. Japanese Journal of Applied Physics, 2016, 55(12): 1202A1. [25] XU G W, WU F H, LIU Q, et al. Vertical β-Ga2O3 power electronics[J]. Journal of Semiconductors, 2023, 44(7): 070301. [26] SINGH R, LENKA T R, PANDA D K, et al. The dawn of Ga2O3 HEMTs for high power electronics- A review[J]. Materials Science in Semiconductor Processing, 2020, 119: 105216. [27] HIGASHIWAKI M, SASAKI K, KURAMATA A, et al. Development of gallium oxide power devices[J]. Physica Status Solidi (a), 2014, 211(1): 21-26. [28] LIU H Y, WANG Y G, LV Y J, et al. 10-kV lateral β-Ga2O3 MESFETs with B ion implanted planar isolation[J]. IEEE Electron Device Letters, 2023, 44(7): 1048-1051. [29] BHATTACHARYYA A, ROY S, RANGA P, et al. High-mobility tri-gate β-Ga2O3 MESFETs with a power figure of merit over 0.9 GW/cm2[J]. IEEE Electron Device Letters, 2022, 43(10): 1637-1640. [30] SEPELAK N P, WILLIAMS J, DRYDEN D M, et al. First demonstration of 500 ℃ operation of β-Ga2O3 MOSFET in air[C]//2022 Compound Semiconductor Week (CSW). June 1-3, 2022, Ann Arbor, MI, USA. IEEE, 2022: 1-2. [31] DONG P F, ZHANG J C, YAN Q L, et al. 6 kV/3.4 mΩ·cm2 vertical β-Ga2O3 Schottky barrier diode with BV2/Ron, sp performance exceeding 1-D unipolar limit of GaN and SiC[J]. IEEE Electron Device Letters, 2022, 43(5): 765-768. [32] VAIDYA A, SAHA C N, SINGISETTI U. Enhancement mode β-(AlxGa1-x)2O3/Ga2O3 heterostructure FET (HFET) with high transconductance and cutoff frequency[J]. IEEE Electron Device Letters, 2021, 42(10): 1444-1447. [33] JIANG P Q, QIAN X, LI X B, et al. Three-dimensional anisotropic thermal conductivity tensor of single crystalline β-Ga2O3[J]. 2018, 113(23): 232105. [34] SLOMSKI M, BLUMENSCHEIN N, PASKOV P P, et al. Anisotropic thermal conductivity of β-Ga2O3 at elevated temperatures: effect of Sn and Fe dopants[J]. Journal of Applied Physics, 2017, 121(23): 235104. [35] LEE C, ROCK N D, ISLAM A, et al. Electron-phonon effects and temperature-dependence of the electronic structure of monoclinic β-Ga2O3[J]. APL Materials, 2023, 11(1): 011106. [36] AHMADI E, OSHIMA Y. Materials issues and devices of α- and β-Ga2O3[J]. Journal of Applied Physics, 2019, 126(16): 160901. [37] GONG H H, ZHOU F, YU X X, et al. 70-μm-body Ga2O3 Schottky barrier diode with 1.48 K/W thermal resistance, 59 A surge current and 98.9% conversion efficiency[J]. IEEE Electron Device Letters, 2022, 43(5): 773-776. [38] WANG B Y, XIAO M, KNOLL J, et al. Low thermal resistance (0.5 K/W) Ga2O3 Schottky rectifiers with double-side packaging[J]. IEEE Electron Device Letters, 2021, 42(8): 1132-1135. [39] KIM S H, SPENCER LUNDH J, SHOEMAKER D, et al. Device-level transient cooling of β-Ga2O3 MOSFETs[C]//2022 21 st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm). May 31- June 3, 2022, San Diego, CA, USA. IEEE, 2022: 1-6. [40] KIM S H, SHOEMAKER D, GREEN A J, et al. Transient thermal management of a β-Ga2O3 MOSFET using a double-side diamond cooling approach[J]. IEEE Transactions on Electron Devices, 2023, 70(4): 1628-1635. [41] YUAN C, ZHANG Y W, MONTGOMERY R, et al. Modeling and analysis for thermal management in gallium oxide field-effect transistors[J]. Journal of Applied Physics, 2020, 127(15): 154502. [42] KIM S, ZHANG Y W, YUAN C, et al. Thermal management of β-Ga2O3 current aperture vertical electron transistors[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11(8): 1171-1176. [43] CHATTERJEE B, ZENG K, NORDQUIST C D, et al. Device-level thermal management of gallium oxide field-effect transistors[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, 9(12): 2352-2365. [44] HONG W, ZHANG C, ZHANG F, et al. Performance improvement of β-Ga2O3 SBD-based rectifier with embedded microchannels in ceramic substrate[J]. Science China Information Sciences, 2024, 67(5): 159404. [45] YU X X, XU W H, WANG Y B, et al. Heterointegrated Ga2O3-on-SiC RF MOSFETs with fT/fmax of 47/51 GHz by ion-cutting process[J]. IEEE Electron Device Letters, 2023, 44(12): 1951-1954. [46] SINGHAL S, LI T, CHAUDHARI A, et al. Reliability of large periphery GaN-on-Si HFETs[J]. Microelectronics Reliability, 2006, 46(8): 1247-1253. [47] GU L, MA H P, SHEN Y, et al. Optimization of heteroepitaxial gallium oxide thin films on diamond composite substrates using pulsed laser deposition method[C]//2023 20th China International Forum on Solid State Lighting & 2023 9th International Forum on Wide Bandgap Semiconductors (SSLCHINA: IFWS). November 27-30, 2023, Xiamen, China. IEEE, 2023: 296-299. [48] SIMON A H. Sputter processing[M]//Handbook of Thin Film Deposition. Amsterdam: Elsevier, 2025: 93-140. [49] HU J C, YANG X D, MENG J Q, et al. Effects of off-axis angles of 4H-SiC substrates on properties of β-Ga2O3 films grown by low-pressure chemical vapor deposition[J]. Applied Surface Science, 2025, 680: 161377. [50] KREBS H U, WEISHEIT M, FAUPEL J, et al. Pulsed laser deposition (PLD)—a versatile thin film technique[M]//Advances in Solid State Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003: 505-518. [51] YADAV M K, MONDAL A, SHARMA S K, et al. Substrate orientation dependent current transport mechanisms in β-Ga2O3/Si based Schottky barrier diodes[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2021, 39(3): 033203. [52] YADAV M K, MONDAL A, DAS S, et al. Impact of annealing temperature on band-alignment of PLD grown Ga2O3/Si (100) heterointerface[J]. Journal of Alloys and Compounds, 2020, 819: 153052. [53] YADAV M K, MONDAL A, SHRINGI S, et al. Performance enhancement of β-Ga2O3 on Si (100) based Schottky barrier diodes using reduced surface field[J]. Semiconductor Science and Technology, 2020, 35(8): 085009. [54] KARMAKAR S, SHIAM I F, DROOPAD R, et al. Enriched electron donor sites and non-overlapping small polaron tunneling electrical conduction in oxygen-deficient β-Ga2O3 thin film on p-Si (100)[J]. Applied Physics A, 2024, 130(7): 510. [55] GUO X C, HAO N H, GUO D Y, et al. β-Ga2O3/p-Si heterojunction solar-blind ultraviolet photodetector with enhanced photoelectric responsivity[J]. Journal of Alloys and Compounds, 2016, 660: 136-140. [56] MEHTA M, PATTIPATI Y, SINGH A R, et al. Low interface resistance in epitaxial β-Ga2O3 vertical power diodes on silicon (100) using TiN buffer[J]. ACS Applied Electronic Materials, 2024, 6(3): 2084-2092. [57] GU L, LI Y, SHEN Y, et al. A strategy for enhancing interfacial thermal transport in Ga2O3-diamond composite structure by introducing an AlN interlayer[J]. Nano Energy, 2024, 132: 110389. [58] GU L, SHEN Y, CHEN W, et al. The influence of annealing temperature on the interfacial heat transfer in pulsed laser deposition-grown Ga2O3 on diamond composite substrates[J]. Journal of Carbon Research, 2024, 10(3): 80. [59] YEN C C, SINGH A K, WU P W, et al. Interface engineering in epitaxial growth of sputtered β-Ga2O3 films on Si substrates via TiN (111) buffer layer for Schottky barrier diodes[J]. Materials Today Advances, 2023, 17: 100348. [60] SAHA R, BHOWMICK S, MISHRA M, et al. Impact of deposition temperature on crystalline quality, oxygen vacancy, defect modulations and hetero-interfacial properties of RF sputtered deposited Ga2O3 thin films on Si substrate[J]. Journal of Physics D: Applied Physics, 2022, 55(50): 505101. [61] MOHAMMED A A A, LIM W F. Effects of implementing dual-step nitrogen ambient for growth and post-deposition annealing of Ga2O3 films sputtered on silicon[J]. Journal of Materials Science: Materials in Electronics, 2024, 35(26): 1763. [62] ABBAS ABDULHUSSEIN MOHAMMED A, LIM W F. High photosensitivity performance vertical structured metal-semiconductor based ultraviolet photodetector using Ga2O3 thin film sputtered on n-type Si(100)[J]. Materials Science and Engineering: B, 2024, 308: 117613. [63] YEN C C, HUANG T M, CHEN P W, et al. Role of interfacial oxide in the preferred orientation of Ga2O3 on Si for deep ultraviolet photodetectors[J]. ACS Omega, 2021, 6(43): 29149-29156. [64] LEE Y J, SCHWEITZ M A, OH J M, et al. Influence of annealing atmosphere on the characteristics of Ga2O3/4H-SiC n-n heterojunction diodes[J]. Materials, 2020, 13(2): 434. [65] LEE H J, LEE G H, CHUNG S H, et al. Improved properties of post-deposition annealed Ga2O3/SiC and Ga2O3/Al2O3/SiC back-gate transistors fabricated by radio frequency sputtering[J]. Micro, 2023, 3(4): 775-784. [66] LI M Q, YANG N, WANG G G, et al. Highly preferred orientation of Ga2O3 films sputtered on SiC substrates for deep UV photodetector application[J]. Applied Surface Science, 2019, 471: 694-702. [67] KUSABA T, SITTIMART P, KATAMUNE Y, et al. Heteroepitaxial growth of β-Ga2O3 thin films on single crystalline diamond (111) substrates by radio frequency magnetron sputtering[J]. Applied Physics Express, 2023, 16(10): 105503. [68] CREIGHTON J R, HO P. Introduction to chemical vapor deposition (CVD)[J]. ASM International, 2001, 407. [69] LEE J B, JEONG J H, JANG M S, et al. Low-temperature growth of Ga2O3 thin films on Si substrates by metal organic chemical vapor deposition and their electrical characteristics[J]. AIP Advances, 2023, 13(11): 115121. [70] SANYAL I, NANDI A, CHERNS D, et al. Thermodynamics of Ga2O3 heteroepitaxy and material growth via metal organic chemical vapor deposition[J]. ACS Applied Electronic Materials, 2024, 6(7): 5021-5028. [71] WANG Z W, HAN K J, HUANG H, et al. Interface-engineering induced swift and controllable solar-blind photoresponse in Ga2O3/SiC heterojunction based on unconventional rectification characteristics[J]. Advanced Functional Materials, 2024, 34(33): 2400498. [72] HRUBI VSÁK F, HU VSEKOVÁ K, ZHENG X, et al. Heteroepitaxial growth of Ga2O3 on 4H-SiC by liquid-injection MOCVD for improved thermal management of Ga2O3 power devices[J]. Journal of Vacuum Science Technology A: Vacuum Surfaces and Films, 2023, 41(4): 042708. [73] XU B, HU J C, MENG J Q, et al. Study of the bonding characteristics at β-Ga2O3(201)/4H-SiC(0001) interfaces from first principles and experiment[J]. Crystals, 2023, 13(2): 160. [74] AKYOL F, OZDEN H. Chemical vapor deposition growth of β-Ga2O3 on Si- and C- face off-axis 4H-SiC at high temperature[J]. Materials Science in Semiconductor Processing, 2024, 170: 107968. [75] KARIM M R, CHEN Z, FENG Z, et al. Two-step growth of β-Ga2O3 films on (100) diamond via low pressure chemical vapor deposition[J]. Journal of Vacuum Science & Technology A, 2021, 39(2): 023411. [76] YADAV M K, MONDAL A, SHARMA S K, et al. Probing interface trapping characteristics of Au/β-Ga2O3 Schottky barrier diode on Si (100)[J]. IEEE Transactions on Device and Materials Reliability, 2021, 21(4): 613-619. [77] YADAV M K, MONDAL A, KUMAR S, et al. Integration of β-Ga2O3 on Si (100) for lateral Schottky barrier diodes[C]//2021 IEEE 8th Workshop on Wide Bandgap Power Devices and Applications (WiPDA). November 7-11, 2021. Redondo Beach, CA, USA. IEEE, 2021: 263-267. [78] KAUR D, DEBATA S, PRATAP SINGH D, et al. Strain effects on the optoelectronic performance of ultra-wide band gap polycrystalline β-Ga2O3 thin film grown on differently-oriented silicon substrates for solar blind photodetector[J]. Applied Surface Science, 2023, 616: 156446. [79] NANDI A, SANYAL I, PETKOV A, et al. Heterogenous integration of gallium oxide with diamond and SiC[C]//Oxide-based Materials and Devices XV. January 27-February 1, 2024. San Francisco, USA. SPIE, 2024: 61-65. [80] MISHRA A, NANDI A, SANYAL I, et al. Ultra-wide bandgap Ga2O3 technologies: benefits of heterogenous integration[C]//Oxide-based Materials and Devices XIV. January 28-February 3, 2023. San Francisco, USA. SPIE, 2023: 31-35. [81] HWANG W S, VERMA A, PEELAERS H, et al. High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes[J]. Applied Physics Letters, 2014, 104(20): 203111. [82] ZHOU H, MAIZE K, QIU G, et al. β-Ga2O3 on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect[J]. Applied Physics Letters, 2017, 111(9): 092102. [83] NOH J, ALAJLOUNI S, TADJER M J, et al. High performance: Ga2O3 nano-membrane field effect transistors on a high thermal conductivity diamond substrate[J]. IEEE Journal of the Electron Devices Society, 2019, 7: 914-918. [84] LEI D, HAN K Z, WU Y, et al. High performance Ga2O3 metal-oxide-semiconductor field-effect transistors on an AlN/Si substrate[J]. IEEE Journal of the Electron Devices Society, 2019, 7: 596-600. [85] ZHOU H, MAIZE K, NOH J, et al. Thermodynamic studies of β-Ga2O3 nanomembrane field-effect transistors on a sapphire substrate[J]. ACS Omega, 2017, 2(11): 7723-7729. [86] LEE D, KIM H W, KIM J, et al. Ultra-wide bandgap β-Ga2O3 heterojunction field-effect transistor using p-type 4H-SiC gate for efficient thermal management[J]. ECS Journal of Solid State Science and Technology, 2020, 9(6): 065006. [87] CHENG Z, YATES L, SHI J J, et al. Thermal conductance across β-Ga2O3-diamond van der Waals heterogeneous interfaces[J]. APL Materials, 2019, 7(3): 031118. [88] ZHENG Y X, SWINNICH E, SEO J. Investigation of thermal properties of β-Ga2O3 nanomembranes on diamond heterostructure using Raman thermometry[J]. ECS Journal of Solid State Science and Technology, 2020, 9(5): 055007. [89] ZHOU H, SI M W, ALGHAMDI S, et al. High-performance depletion/enhancement-ode β-Ga2O3 on insulator (GOOI) field-effect transistors with record drain currents of 600/450 mA/mm[J]. IEEE Electron Device Letters, 2017, 38(1): 103-106. [90] LIU Y, WANG P Q, WANG Y L, et al. van der Waals integrated devices based on nanomembranes of 3D materials[J]. Nano Letters, 2020, 20(2): 1410-1416. [91] QU Z Y, XIE Y F, ZHAO T C, et al. Extremely low thermal resistance of β-Ga2O3 MOSFETs by co-integrated design of substrate engineering and device packaging[J]. ACS Applied Materials & Interfaces, 2024, 16(42): 57816-57823. [92] SHEN Z H, XU W H, CHEN Y, et al. Wafer-scale single-crystalline β-Ga2O3 thin film on SiC substrate by ion-cutting technique with hydrophilic wafer bonding at elevated temperatures[J]. Science China Materials, 2023, 66(2): 756-763. [93] XU W H, YOU T G, MU F W, et al. Thermodynamics of ion-cutting of β-Ga2O3 and wafer-scale heterogeneous integration of a β-Ga2O3 thin film onto a highly thermal conductive SiC substrate[J]. ACS Applied Electronic Materials, 2022, 4(1): 494-502. [94] XU Y, MU F W, WANG Y H, et al. Direct wafer bonding of Ga2O3-SiC at room temperature[J]. Ceramics International, 2019, 45(5): 6552-6555. [95] XU W H, ZHANG Y H, HAO Y, et al. First demonstration of waferscale heterogeneous integration of Ga2O3 MOSFETs on SiC and Si substrates by ion-cutting process[C]//2019 IEEE International Electron Devices Meeting (IEDM). December 7-11, 2019. San Francisco, CA, USA. IEEE, 2019. [96] XU W H, YOU T G, WANG Y B, et al. Efficient thermal dissipation in wafer-scale heterogeneous integration of single-crystalline β-Ga2O3 thin film on SiC[J]. Fundamental Research, 2021, 1(6): 691-696. [97] XU W H, ZHAO T C, ZHANG L H, et al. Thermal transport properties of β-Ga2O3 thin films on Si and SiC substrates fabricated by an ion-cutting process[J]. ACS Applied Electronic Materials, 2024, 6(3): 1710-1717. [98] CHENG Z, MU F W, YOU T G, et al. Thermal transport across ion-cut monocrystalline β-Ga2O3 thin films and bonded β-Ga2O3-SiC interfaces[J]. ACS Applied Materials & Interfaces, 2020, 12(40): 44943-44951. [99] LIAO M E, HUYNH K, CHENG Z, et al. Thermal transport and structural improvements due to annealing of wafer bonded β-Ga2O3|4H-SiC[J]. Journal of Vacuum Science & Technology A, 2023, 41(6): 063203. [100] LIANG J B, TAKATSUKI D, HIGASHIWAKI M, et al. Fabrication of β-Ga2O3/Si heterointerface and characterization of interfacial structures for high-power device applications[J]. Japanese Journal of Applied Physics, 2022, 61: SF1001. [101] WANG Z W, TAKATSUKI D, LIANG J B, et al. Fabrication of n-Si/n-Ga2O3 heterojunctions by surface-activated bonding and their electrical properties[J]. Journal of Applied Physics, 2022, 131(7): 074501. [102] WANG Z W, KITADA T, TAKATSUKI D, et al. Electrical properties and energy band alignments of p-Si/n-Ga2O3 and p+-Si/n-Ga2O3 heterostructures fabricated by surface-activated bonding[J]. Journal of Applied Physics, 2023, 133(19): 194503. [103] QU Z Y, XU W H, YOU T G, et al. Effect of amorphous layer at the heterogeneous interface on the device performance of β-Ga2O3/Si Schottky barrier diodes[J]. IEEE Journal of the Electron Devices Society, 2023, 11: 135-140. [104] MATSUMAE T, KURASHIMA Y, TAKAGI H, et al. Low-temperature direct bonding of SiC and Ga2O3 substrates under atmospheric conditions[J]. Journal of Applied Physics, 2021, 130(8): 085303. [105] XU W H, SHEN Z H, QU Z Y, et al. Current transport mechanism of lateral Schottky barrier diodes on β-Ga2O3/SiC structure with atomic level interface[J]. Applied Physics Letters, 2024, 124(11): 112102. [106] MATSUMAE T, KURASHIMA Y, UMEZAWA H, et al. Low-temperature direct bonding of β-Ga2O3 and diamond substrates under atmospheric conditions[J]. Applied Physics Letters, 2020, 116(14): 141602. [107] SITTIMART P, OHMAGARI S, MATSUMAE T, et al. Diamond/β-Ga2O3 pn heterojunction diodes fabricated by low-temperature direct-bonding[J]. AIP Advances, 2021, 11(10): 105114. [108] HERRERA-RODRIGUEZ C, SHIMBORI A, GROTJOHN T. α-Ga2O3/diamond heterojunction PN diode: device fabrication and TCAD modelling[C]//2023 Device Research Conference (DRC). June 25-28, 2023, Santa Barbara, CA, USA. IEEE, 2023: 1-2. [109] ZHAO T, YU X, XU W, et al. First demonstration of wafer-level arrayed β-Ga2O3 thin films and MOSFETs on diamond by transfer printing technology [C]//2024 IEEE International Electron Devices Meeting (IEDM). December 7-11, 2024. San Francisco, CA, USA. IEEE, 2024. [110] WANG Y B, XU W H, YOU T G, et al. β-Ga2O3 MOSFETs on the Si substrate fabricated by the ion-cutting process[J]. Science China Physics, Mechanics & Astronomy, 2020, 63(7): 277311. [111] WANG Y B, XU W H, HAN G Q, et al. Channel properties of Ga2O3-on-SiC MOSFETs[J]. IEEE Transactions on Electron Devices, 2021, 68(3): 1185-1189. [112] WANG Y B, XU W H, HAN G Q, et al. Channel mobility properties of β-Ga2O3 MOSFETs on Si substrate fabricated by ion-cutting process[C]//2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM). April 8-11, 2021, Chengdu, China. IEEE, 2021. [113] WANG Y B, HAN G Q, XU W H, et al. Recessed-gate Ga2O3-on-SiC MOSFETs demonstrating a stable power figure of merit of 100 MW/cm2 up to 200 ℃[J]. IEEE Transactions on Electron Devices, 2022, 69(4): 1945-1949. [114] LIU C Y, WANG Y B, XU W H, et al. Unique bias stress instability of heterogeneous Ga2O3-on-SiC MOSFET[J]. IEEE Electron Device Letters, 2023, 44(8): 1256-1259. [115] LIU C Y, WANG Y B, JIA X L, et al. Anomalous dynamic performance in heterogeneous Ga2O3-on-SiC MOSFETs fabricated using ion-implantation cutting process[J]. Physica Scripta, 2024, 99(10): 105931. [116] WANG Y B, XU W H, HAN G Q, et al. Temperature-dependent characteristics of Schottky barrier diode on heterogeneous β-Ga2O3(201)-Al2O3-Si Substrate[J]. Journal of Physics D: Applied Physics, 2021, 54(3): 034004. [117] XIE Y F, XU W H, HE Y, et al. Three-dimensional thermal analysis of heterogeneously integrated β-Ga2O3-on-SiC SBDs using Raman thermography and electrothermal modeling[J]. Applied Physics Letters, 2024, 124(25): 252105. [118] REN Q H, XU W H, SHEN Z H, et al. Solar-blind photodetector based on single crystal Ga2O3 film prepared by a unique ion-cutting process[J]. ACS Applied Electronic Materials, 2021, 3(1): 451-460. [119] SHEN Z H, XU W H, XU Y, et al. The effect of oxygen annealing on characteristics of β-Ga2O3 solar-blind photodetectors on SiC substrate by ion-cutting process[J]. Journal of Alloys and Compounds, 2021, 889: 161743. |
[1] | 韩宇, 焦腾, 于含, 赛青林, 陈端阳, 李震, 李轶涵, 张钊, 董鑫. 衬底晶面对MOCVD同质外延生长n-Ga2O3薄膜性质的影响研究[J]. 人工晶体学报, 2025, 54(3): 438-444. |
[2] | 陈俊宏, 胡鉴闻, 魏钟鸣. 基于氧化镓微纳米结构的探测器研究进展[J]. 人工晶体学报, 2025, 54(3): 491-510. |
[3] | 王君岚, 李早阳, 杨垚, 祁冲冲, 刘立军. 导模法生长6英寸氧化镓单晶的结晶界面变形度评估与控制研究[J]. 人工晶体学报, 2025, 54(3): 396-406. |
[4] | 文俊棚, 郝伟兵, 韩照, 徐光伟, 龙世兵. 氧化镍/氧化镓异质结二极管台面终端技术研究[J]. 人工晶体学报, 2025, 54(3): 517-523. |
[5] | 王月飞, 高冲, 吴哲, 李炳生, 刘益春. 双生长腔互联MOCVD外延生长氧化镓异质结构及其紫外光电探测器件的研究[J]. 人工晶体学报, 2025, 54(3): 426-437. |
[6] | 殷长帅, 孟标, 梁康, 崔翰文, 刘胜, 张召富. 采用不同辐射传热模型模拟氧化镓单晶生长热场的对比研究[J]. 人工晶体学报, 2025, 54(3): 386-395. |
[7] | 杨文娟, 卜予哲, 赛青林, 齐红基. 导模法生长氧化镓晶体中的位错缺陷及其分布特点[J]. 人工晶体学报, 2025, 54(3): 414-419. |
[8] | 孙汝军, 张晶辉, 李一帆, 郝跃, 张进成. Mg掺杂氧化镓研究进展[J]. 人工晶体学报, 2025, 54(3): 361-370. |
[9] | 贺松, 刘金杨, 郝伟兵, 徐光伟, 龙世兵. 台面终端氧化镓肖特基二极管单粒子效应研究[J]. 人工晶体学报, 2025, 54(3): 511-516. |
[10] | 严宇超, 王琤, 陆昌程, 刘莹莹, 夏宁, 金竹, 张辉, 杨德仁. 2英寸Fe掺杂高阻β相氧化镓单晶生长及(010)衬底性质研究[J]. 人工晶体学报, 2025, 54(2): 197-201. |
[11] | 屈珉敏, 余建刚, 李子唯, 李旺旺, 雷程, 李腾腾, 李丰超, 梁庭, 贾仁需. 新型复合终端氧化镓肖特基二极管电学特性仿真研究[J]. 人工晶体学报, 2025, 54(2): 348-357. |
[12] | 谢银飞, 何阳, 刘伟业, 徐文慧, 游天桂, 欧欣, 郭怀新, 孙华锐. 超宽带隙氧化镓功率器件热管理的研究进展[J]. 人工晶体学报, 2025, 54(2): 290-311. |
[13] | 丁子舰, 颜世琪, 徐希凡, 辛倩. 脉冲激光沉积α相氧化镓薄膜及其日盲光电探测器[J]. 人工晶体学报, 2025, 54(2): 329-336. |
[14] | 邵双尧, 杨烁, 冯华钰, 贾志泰, 陶绪堂. 氧化镓雪崩光电探测器的研究进展[J]. 人工晶体学报, 2025, 54(2): 276-289. |
[15] | 魏雨夕, 马昕宇, 江泽俊, 魏杰, 罗小蓉. 超宽禁带氧化镓功率器件新结构及其电热特性研究进展[J]. 人工晶体学报, 2025, 54(2): 263-275. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||