[1] RAZEGHI M, ROGALSKI A. Semiconductor ultraviolet detectors[J]. J Appl Phys, 1996, 79(10): 7433-7473. [2] LI H G, WU G, CHEN H Z, et al. Spectral response tuning and realization of quasi-solar-blind detection in organic ultraviolet photodetectors[J]. Organic Electronics, 2011, 12(1): 70-77. [3] LYU C G, TIAN J, YANG W B, et al. Solar-blind ultraviolet upwelling radiance diurnal variation led by observation geometry factors on geostationary attitude sensor limb viewing[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2016, 27(6): 943-953. [4] YAN S Q, JIAO T, DING Z J, et al. Ga2O3 Schottky avalanche solar-blind photodiode with high responsivity and photo-to-dark current ratio[J]. Advanced Electronic Materials, 2023, 9(11): 2300297. [5] YANG H R, CHENG T H, XIN Q, et al. Efficient suppression of persistent photoconductivity in β-Ga2O3-based photodetectors with square nanopore arrays[J]. ACS Applied Materials & Interfaces, 2023, 15(27): 32561-32568. [6] ZHANG L, WEI Z H, WANG X X, et al. Ultrahigh-sensitivity and fast-speed solar-blind ultraviolet photodetector based on a broken-gap van der Waals heterodiode[J]. ACS Applied Materials & Interfaces, 2023, 15(11): 14513-14522. [7] WANG T J, XU W Z, LU H, et al. Solar-blind ultraviolet band-pass filter based on metal—dielectric multilayer structures[J]. Chinese Physics B, 2014, 23(7): 074201. [8] SUZUKI R, NAKAGOMI S, KOKUBUN Y. Solar-blind photodiodes composed of a Au Schottky contact and a β-Ga2O3 single crystal with a high resistivity cap layer[J]. Applied Physics Reviews, 2011, 98(13): 131114. [9] SANG L W, QIN Z X, CEN L B, et al. AlGaN-based solar-blind Schottky photodetectors fabricated on AlN/sapphire template[J]. Chinese Physics Letters, 2008, 25(1): 258-261. [10] ALEMA F, HERTOG B, MUKHOPADHYAY P, et al. Solar blind Schottky photodiode based on an MOCVD-grown homoepitaxial β-Ga2O3 thin film[J]. APL Materials, 2019, 7(2): 022527. [11] OSHIMA T, OKUNO T, ARAI N, et al. Vertical solar-blind deep-ultraviolet Schottky photodetectors based on β-Ga2O3Substrates[J]. Applied Physics Express, 2008, 1(1): 011202. [12] LEBEDEV V, CIMALLA I, CIMALLA V, et al. Defect related absorption and emission in AlGaN solar-blind UV photodetectors[J]. Physica Status Solidi (c), 2005, 2(4): 1360-1365. [13] KHAN M A, KUZNIA J N, OLSON D T, et al. High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers[J]. Applied Physics Letters, 1992, 60(23): 2917-2929. [14] CHEN C H, CHANG S J, WU M H, et al. AlGaN metal-semiconductor-metal photodetectors with low-temperature AlN cap layer and recessed electrodes[J]. Japanese Journal of Applied Physics, 2010, 49(4S): 04DG05. [15] XIE F, LU H, CHEN D J, et al. Ultra-low dark current AlGaN-based solar-blind metal-semiconductor-metal photodetectors for high-temperature applications[J]. IEEE Sensors Journal, 2012, 12(6): 2086-2090. [16] BRENDEL M, HELBLING M, KNIGGE A, et al. Solar-blind AlGaN MSM photodetectors with 24% external quantum efficiency at 0 V[J]. Electronics Letters, 2015, 51(20): 1598-1600. [17] LIEN W C, TSAI D S, LIEN D H, et al. 4H-SiC metal-semiconductor-metal ultraviolet photodetectors in operation of 450 ℃[J]. IEEE Electron Device Letters, 2012, 33(11): 1586-1588. [18] TANG X, JI F W, WANG H, et al. Temperature enhanced responsivity and speed in an AlGaN/GaN metal-heterostructure-metal photodetector[J]. Applied Physics Letters, 2021, 119(1): 013503. [19] KUKSENKOV D V, TEMKIN H, OSINSKY A, et al. Low-frequency noise and performance of GaN p-n junction photodetectors[C]//International Electron Devices Meeting. IEDM Technical Digest. December 10-10, 1997, Washington, DC, USA. IEEE, 2002: 759-762. [20] WANG G S, LU H, XIE F, et al. High quantum efficiency back-illuminated AlGaN-based solar-blind ultraviolet p-i-n photodetectors[J]. Chinese Physics Letters, 2012, 29(9): 097302. [21] CHEN X P, ZHU H L, CAI J F, et al. High-performance 4H-SiC-based ultraviolet p-i-n photodetector[J]. Journal of Applied Physics, 2007, 102(2): 024505. [22] CAO J, CHEN L, CHEN X, et al. Performance improvement of amorphous Ga2O3/p-Si deep ultraviolet photodetector by oxygen plasma treatment[J]. Crystals, 2021, 11(10): 1248. [23] WANG Y H, LI H R, CAO J, et al. Ultrahigh gain solar blind avalanche photodetector using an amorphous Ga2O3-based heterojunction[J]. ACS Nano, 2021, 15(10): 16654-16663. [24] NAKAGOMI S, MOMO T, TAKAHASHI S, et al. Deep ultraviolet photodiodes based on β-Ga2O3/SiC heterojunction[J]. Applied Physics Reviews, 2013, 103(7): 072105. [25] 宋登元, 王小平. APD、PMT及其混合型高灵敏度光电探测器[J]. 半导体技术, 2000, 25(3): 5-8+12. SONG D Y, WANG X P. APD, PMT and hybrid photodetectors with high end sensitivity[J]. Semiconductor Technology, 2000, 25(3): 5-8+12 (in Chinese). [26] PIELS M, BOWERS J E. Photodetectors for silicon photonic integrated circuits[M]//Photodetectors. Amsterdam: Elsevier, 2016: 3-20. [27] YUAN Y, TOSSOUN B, HUANG Z H, et al. Avalanche photodiodes on silicon photonics[J]. Journal of Semiconductors, 2022, 43(2): 021301. [28] WANG Y M, DING K, SUN B Q, et al. Two-dimensional layered material/silicon heterojunctions for energy and optoelectronic applications[J]. Nano Research, 2016, 9(1): 72-93. [29] SU L X, YANG W, CAI J, et al. Self-powered ultraviolet photodetectors driven by built-In electric field[J]. Small, 2017, 13(45): 1701687. [30] OSAMURA K, NAKAJIMA K, MURAKAMI Y, et al. Fundamental absorption edge in GaN, InN and their alloys[J]. Solid State Communications, 1972, 11(5): 617-621. [31] MORKOÇ H, STRITE S, GAO G B, et al. Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies[J]. J Appl Phys, 1994, 76(3): 1363-1398. [32] FUJITA S, ODA M, KANEKO K, et al. Evolution of corundum-structured III-oxide semiconductors: growth, properties, and devices[J]. Japanese Journal of Applied Physics, 2016, 55(12): 1202A3. [33] KIM M, SEO J H, SINGISETTI U, et al. Recent advances in free-standing single crystalline wide band-gap semiconductors and their applications: GaN, SiC, ZnO, β-Ga2O3, and diamond[J]. Journal of Materials Chemistry C, 2017, 5(33): 8338-8354. [34] TSAO J Y, CHOWDHURY S, HOLLIS M A, et al. Ultrawide-bandgap semiconductors: research opportunities and challenges[J]. Advanced Electronic Materials, 2018, 4(1): 1600501. [35] 刘万金, 胡小燕, 喻松林. GaN基紫外探测器发展概况[J]. 激光与红外, 2012, 42(11): 1210-1214. LIU W J, HU X Y, YU S L. Development overview of GaN-based ultraviolet detector[J]. Laser & Infrared, 2012, 42(11): 1210-1214 (in Chinese). [36] CAI Q, YOU H F, GUO H, et al. Progress on AlGaN-based solar-blind ultraviolet photodetectors and focal plane arrays[J]. Light, Science & Applications, 2021, 10(1): 94. [37] CHEN X H, REN F F, GU S L, et al. Review of gallium-oxide-based solar-blind ultraviolet photodetectors[J]. Photonics Research, 2019, 7(4): 381. [38] DONG H, XUE H W, HE Q M, et al. Progress of power field effect transistor based on ultra-wide bandgap Ga2O3 semiconductor material[J]. Journal of Semiconductors, 2019, 40(1): 011802. [39] 肖 演, 杨斯铄, 程凌云, 等. 非晶氧化镓基日盲紫外探测器的研究进展[J]. 光电工程, 2023, 50(6): 3-23. XIAO Y, YANG S S, CHENG L Y, et al. Research progress of solar-blind UV photodetectors based on amorphous gallium oxide[J]. Opto-Electronic Engineering, 2023, 50(6): 3-23 (in Chinese). [40] PEARTON S J, YANG J C, CARY P H, et al. A review of Ga2O3 materials, processing, and devices[J]. Applied Physics Reviews, 2018, 5(1): 011301. [41] CHEN Z M, LU X, TU Y J, et al. ε-Ga2 O3: an emerging wide bandgap piezoelectric semiconductor for application in radio frequency resonators[J]. Advanced Science, 2022, 9(32): 2203927. [42] MIAO J S, WANG C. Avalanche photodetectors based on two-dimensional layered materials[J]. Nano Research, 2021, 14(6): 1878-1888. [43] COVA S, GHIONI M, LACAITA A, et al. Avalanche photodiodes and quenching circuits for single-photon detection[J]. Applied Optics, 1996, 35(12): 1956-1976. [44] 周 扬, 陈永平. SPAD的EDA模型及其在集成淬火电路设计中的应用[J]. 半导体光电, 2010, 31(5): 694-697+701. ZHOU Y, CHEN Y P. EDA model for single-photo avalanche diodes and its application in integrate quenching circuits design[J]. Semiconductor Optoelectronics, 2010, 31(5): 694-697+701 (in Chinese). [45] ZHAO B, WANG F, CHEN H Y, et al. Solar-blind avalanche photodetector based on single ZnO-Ga2O3 core-shell microwire[J]. Nano Letters, 2015, 15(6): 3988-3993. [46] MAHMOUD W E. Solar blind avalanche photodetector based on the cation exchange growth of β-Ga2O3/SnO2 bilayer heterostructure thin film[J]. Solar Energy Materials and Solar Cells, 2016, 152: 65-72. [47] CHEN X H, XU Y, ZHOU D, et al. Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase α-Ga2O3/ZnO isotype heterostructures[J]. ACS Applied Materials & Interfaces, 2017, 9(42): 36997-37005. [48] QIAO B S, ZHANG Z Z, XIE X H, et al. Avalanche gain in metal-semiconductor-metal Ga2O3 solar-blind photodiodes[J]. The Journal of Physical Chemistry C, 2019, 123(30): 18516-18520. [49] LIU N T, LIN H B, YANG Y X, et al. High performance solar blind avalanche photodetector based on a single-crystalline -Ga2O3/BaSnO3 heterojunction[J]. Materials Today Physics, 2024, 42: 101385. [50] LI Z, CHENG Y N, XU Y, et al. High-performance β-Ga2O3 solar-blind Schottky barrier photodiode with record detectivity and ultrahigh gain via carrier multiplication process[J]. IEEE Electron Device Letters, 2020, 41(12): 1794-1797. [51] ZHANG Q Y, LI N, ZHANG T, et al. Enhanced gain and detectivity of unipolar barrier solar blind avalanche photodetector via lattice and band engineering[J]. Nature Communications, 2023, 14(1): 418. [52] WANG R, SHAO Z G, XU K C, et al. GaN/Ga2O3 avalanche photodiodes with separate absorption and multiplication structure[J]. Optics Letters, 2023, 48(21): 5651-5654. [53] GAO C, WANG Y F, FU S H, et al. Solar blind avalanche photodetector based on a n-β-Ga2O3/n-Si heterojunction via an introduction of AlN buffer layer for interface lattice and band engineering[J]. Materials Today Physics, 2024, 45: 101474. [54] SHAO Z G, CHEN D J, LU H, et al. High-gain AlGaN solar-blind avalanche photodiodes[J]. IEEE Electron Device Letters, 2014, 35(3): 372-374. [55] HUANG Y, CHEN D J, LU H, et al. Back-illuminated separate absorption and multiplication AlGaN solar-blind avalanche photodiodes[J]. Applied Physics Letters, 2012, 101(25): 253516. |