Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (8): 1305-1329.DOI: 10.16553/j.cnki.issn1000-985x.2025.0108
• Reviews • Next Articles
DAI Yizhi(
), MA Lin, ZHANG Wenjie, LEI Wenxuan, XIAO Wen, ZHANG Junqi, WANG Wenyu, ZHANG Jinxing, LIU Yucheng(
)
Received:2025-05-22
Online:2025-08-20
Published:2025-09-01
CLC Number:
DAI Yizhi, MA Lin, ZHANG Wenjie, LEI Wenxuan, XIAO Wen, ZHANG Junqi, WANG Wenyu, ZHANG Jinxing, LIU Yucheng. Research Progress on Structure Dimensional Regulation of Metal Halide Perovskite Single Crystal and Their Direct-Type X-Ray Detection Performance[J]. Journal of Synthetic Crystals, 2025, 54(8): 1305-1329.
Fig.1 Schematic illustration of crystal structure for the metal halides perovskite with different dimensions. (a) 3D structure; (b) 2D structure; (c) 1D structure; (d) 0D structure
Fig.2 Basic principles of single crystal growth by solution method. (a) Schematic diagram of homogeneous and heterogeneous nucleation during supersaturation of a solution; (b) relationship between the free energy for homogeneous nucleation and particle radius
Fig.3 Basic principles and methods of growth for perovskite single crystal. (a)~(c) The principles and methods for maintaining solution at supersaturation state; (d) slow cooling crystallization growth method in hydrohalic acid aqueous solution; (e) temperature increasing reaction crystallization growth method in organic solution; (f) reverse solvent diffusion assisted crystallization growth method; (g) solvent slow evaporation growth method
Fig.4 Single crystal growth of 3D structured perovskite. (a) Crystal structure of 3D perovskite; (b) MAPbI3 single crystal grown by slow cooling crystallization in aqueous solution[32]; (c)~(d) MAPbI3 single crystal grown by slow cooling crystallization of top seed crystal aqueous solution growing method[33]; (e) MAPbI3 and MAPbBr3 single crystal grown by reverse solvent diffusion assisted crystallization growing method[34]; (f) MAPbI3 and MAPbBr3 single crystal grown by temperature increasing reaction crystallization growing method[36,39]
Fig.5 Single crystal growth of inorganic 3D perovskite CsPbBr3. (a) Growth of inorganic perovskite CsPbBr3 single crystal and CsPbCl3 single crystal by high-temperature Bridgman growth method; (b) growth of high-quality inorganic perovskite CsPbBr3 single crystal by atmosphere-controlled edge-defined film-fed growth (EFG) method[43]; (c) growth of inorganic perovskite CsPbBr3 single crystal by solution method[44-49]
Fig.6 Single crystal growth of 2D structured perovskite. (a) Crystal structure of 2D (PEA)2PbI4[51]; (b) schematic diagram of the anti-solvent vapor-assisted crystallization and anti-solvent vapor-assisted capping crystallization process, and the optical images of PEA2PbI4 crystals obtained by these methods[52]; (c) schematic diagram of the induced peripheral crystallization procedure to grow 2D (PEA)2PbI4 single-crystalline membrane[54]; (d) schematic diagram of the crystallization process at different temperatures and the images of FPEA2PbI4 crystals[56]; (e) photographs of (BA)2(MA) n-1Pb n I3n+1 single crystals[60]
Fig.7 Single crystal growth of 1D structured perovskite. (a) Crystallographic packing diagrams of (BAH)BiI4 viewed along the a-axis, power XRD pattern of the top facet of (BAH)BiI4 single crystal and the powder XRD pattern of (BAH)BiI4 water-soaking for 60 d[63]; (b) photograph, SEM-EDS mapping, measured and simulated XRD patterns of CsCu2I3 single crystals[64]; (c) procedure for crystal growth and the photograph of (TMHD)SbBr5 single crystal[65]; (d) schematic procedures diagrams for the grow of CsAg x Cu2-x I3 (0≤x≤2) single crystals[22]
Fig.8 Single crystal growth of 0D structured perovskite. (a) Crystal structure of 0D perovskite A3M2I9[67]; (b) photographs of the perovskite A3M2I9 single crystals[68]; (c) Cs3Bi2I9 single crystal and wafers[69]; (d) solvent evaporation crystallization method to grow Cs3Bi2I9 single crystals[70]; (e) nucleation-controlled method to grow Cs3Bi2I9 single crystals[73]; (f) vertical Bridgman growth method and photographs of Cs3Bi2Br9 single crystals[78]; (g) continuously supplying of pre-crystallized solution to grow 329-type single crystals[80]
Fig.9 Device structure of different X-ray detectors. (a) Photoconductor X-ray detector; (b) photodiode X-ray detector;(c) phototransistor X-ray detector
Fig.10 3D perovskite single crystal X-ray detectors. (a) Photograph of a perovskite FA0.85MA0.1Cs0.05PbI2.55Br0.45 single crystal, detector structure and X-ray detection performance[12]; (b) schematic illustration of MSM and p-i-n MAPbI3 single crystal devices, the curves of dark current with respect to electric field and the current density as a function of incident dose rate of the devices[87]; (c) schematic illustration of the metal halide perovskite single crystals with different heterointerfaces and their X-ray detection performance[24]; (d) schematic illustration of the critical temperature field heating strategy and the ferroelastic domain wall distribution before and after the critical temperature field heating with 700 μm thick MAPbI3 single crystal, μτ product and sensitivity of detectors based on MAPbI3 single crystals without domain walls[88]; (e) photographs of the yellow-phase FAPbI3 single crystal rods, the detector structure, X-ray detection sensitivity and imaging[89]
Fig.11 2D perovskite single crystal X-ray detectors. (a) The device structure of (FPEA)2PbI4 single crystal X-ray detector and corresponding X-ray detection performance[57]; (b) schematic diagram of device structure and working mechanism of 2D and 3D/2D/3D single crystal X-ray detectors, detection sensitivity of 2D and 3D/2D/3D single crystal detectors, and X-ray image measured by the 3D/2D/3D single crystal detector[27]; (c) photograph and structure of CsPb2Br5 single crystals, and their X-ray detection performance[93]; (d) crystal structure of Ge0.5Pb0.5X6 octahedra, photograph of (PEA)2Ge0.5Pb0.5I4 single crystal, corresponding X-ray detection sensitivity and X-ray imaging[61]
Fig.12 1D perovskite single crystal X-ray detectors. (a) Photoconductivity, X-ray response and sensitivity statistics of (BAH)BiI4 single crystal device[63]; (b) structure, photoconductivity and sensitivity of CsCu2I3 single crystal device[64]; (c) structure, photoconductivity and sensitivity of (TMHD)SbBr5 single crystal device[65]; (d) structure, X-ray response current density and dark current of (ATZ)(EA)4Pb3I11 single crystal device[66]
Fig.13 0D perovskite single crystal X-ray detectors. (a) Photographs of MA3Bi2I9 single crystals, structure and sensitivity of the detector[72]; (b) photographs of MA3Bi2I9 single crystal, sensitivity and detection limit of the detector[74]; (c) structure of AG3Bi2I9, X-ray response current and sensitivity of the detector[81]; (d) photographs of Cs3Bi2I8Br and Cs3Bi2I3Br6 single crystal, sensitivity and detection limit of Cs3Bi2I8Br detector[96]; (e) images measured by the MA3Bi2I6Br3 single crystal linear array detector[80]
| 维度 | 钙钛矿类型 | 迁移率-寿命积/(cm2·V-1) | 电阻率/(Ω·cm) | 灵敏度/(μC·Gy-1·cm-2) | 探测限/(nGy·s-1) | 参考文献 |
|---|---|---|---|---|---|---|
| 3D | MAPbI3 | 5.30×10-3 | 2.82×107 | 2.31×104 | 19 100 | [ |
| DMAMAPbI3 | 7.20×10-3 | 3.04×108 | 1.18×104 | 16.9 | [ | |
| GAMAPbI3 | 1.30×10-2 | 2.05×108 | 3.67×103 | 16.9 | [ | |
| FAPbI3 | 1.5×105 | 267 | [ | |||
| MAPbI3 | 1.46×10-3 | 5.2×106 | 1.5 | [ | ||
| Cs0.1FA0.85GA0.05PbI2.7Br0.3 | 1.09×10-2 | 2.5×106 | 7.09 | [ | ||
| MAPbBr3/MAPbI3 | 4.88×10-2 | 2.22×108 | 3.98×105 | 12.2 | [ | |
| MAPbBr3 | 7.01×10-4 | 4.53×106 | 2.90×103 | [ | ||
| MAPbI3 | 1.06×10-3 | 1.62×107 | 3.05×104 | [ | ||
| CsPbBr3 | 8.11×10-4 | 46 180 | 10.81 | [ | ||
| FAPbI3 | 7.82×10-2 | 2.31×1011 | 2.16×105 | 2 | [ | |
| 2D | (F-PEA)2PbI4 | 5.10×10-4 | 1.36×1012 | 3 402 | 23 | [ |
| (DGA)PbI4 | 4.12×10-3 | 4 869 | 95.4 | [ | ||
| CsPb2Br5 | 2.53×10-2 | 5.51×1010 | 8 865.6 | 12.7 | [ | |
| (PEA)2Ge0.5Pb0.5I4 | 3.64×10-3 | 8.56×109 | 13 488 | 8.23 | [ | |
| (PEA)2PbI4 | 3.31×10-3 | 7.31×1010 | 840 | 12.9 | [ | |
| (PEA)2GeI4 | 2.23×10-4 | 6.41×109 | 1 527 | 18.9 | [ | |
| 1D | (BAH)BiI4 | 1.95×10-4 | 4.20×1011 | 1 181.8 | 77 | [ |
| DABCO-N2H5-Br3 | 2.74×1010 | 1 143±10 | 2 680 | [ | ||
| DABCO-N2H5-I3 | 1.26×1010 | 1 187±9 | 2 880 | [ | ||
| CsCu2I3 | 1.847×10-2 | 424 | 0.93 | [ | ||
| (TMHD)SbBr5 | 8.33×10-3 | 62.8 | [ | |||
| (ATZ)(EA)4Pb3I11 | 2.22×10-4 | 1.94×1011 | 1 356 | [ | ||
| 0D | MA3Bi2I9 | 2.87×10-3 | 3.74×1010 | 1 947 | 83 | [ |
| Cs3Bi2I9 | 7.97×10-4 | 2.79×1010 | 1 652.3 | 130 | [ | |
| MA3Bi2I9 | 1.20×10-3 | 5.27×1011 | 10 620 | 0.62 | [ | |
| AG3Bi2I9 | 7.94×10-3 | 3.78×1010 | 5 791 | 2.6 | [ | |
| Cs3Bi2I8Br | 1.99×1010 | 1.33×104 | 28.6 | [ |
Table 1 Performance parameters comparison of 3D, 2D, 1D, 0D structure perovskite single crystal X-ray detector
| 维度 | 钙钛矿类型 | 迁移率-寿命积/(cm2·V-1) | 电阻率/(Ω·cm) | 灵敏度/(μC·Gy-1·cm-2) | 探测限/(nGy·s-1) | 参考文献 |
|---|---|---|---|---|---|---|
| 3D | MAPbI3 | 5.30×10-3 | 2.82×107 | 2.31×104 | 19 100 | [ |
| DMAMAPbI3 | 7.20×10-3 | 3.04×108 | 1.18×104 | 16.9 | [ | |
| GAMAPbI3 | 1.30×10-2 | 2.05×108 | 3.67×103 | 16.9 | [ | |
| FAPbI3 | 1.5×105 | 267 | [ | |||
| MAPbI3 | 1.46×10-3 | 5.2×106 | 1.5 | [ | ||
| Cs0.1FA0.85GA0.05PbI2.7Br0.3 | 1.09×10-2 | 2.5×106 | 7.09 | [ | ||
| MAPbBr3/MAPbI3 | 4.88×10-2 | 2.22×108 | 3.98×105 | 12.2 | [ | |
| MAPbBr3 | 7.01×10-4 | 4.53×106 | 2.90×103 | [ | ||
| MAPbI3 | 1.06×10-3 | 1.62×107 | 3.05×104 | [ | ||
| CsPbBr3 | 8.11×10-4 | 46 180 | 10.81 | [ | ||
| FAPbI3 | 7.82×10-2 | 2.31×1011 | 2.16×105 | 2 | [ | |
| 2D | (F-PEA)2PbI4 | 5.10×10-4 | 1.36×1012 | 3 402 | 23 | [ |
| (DGA)PbI4 | 4.12×10-3 | 4 869 | 95.4 | [ | ||
| CsPb2Br5 | 2.53×10-2 | 5.51×1010 | 8 865.6 | 12.7 | [ | |
| (PEA)2Ge0.5Pb0.5I4 | 3.64×10-3 | 8.56×109 | 13 488 | 8.23 | [ | |
| (PEA)2PbI4 | 3.31×10-3 | 7.31×1010 | 840 | 12.9 | [ | |
| (PEA)2GeI4 | 2.23×10-4 | 6.41×109 | 1 527 | 18.9 | [ | |
| 1D | (BAH)BiI4 | 1.95×10-4 | 4.20×1011 | 1 181.8 | 77 | [ |
| DABCO-N2H5-Br3 | 2.74×1010 | 1 143±10 | 2 680 | [ | ||
| DABCO-N2H5-I3 | 1.26×1010 | 1 187±9 | 2 880 | [ | ||
| CsCu2I3 | 1.847×10-2 | 424 | 0.93 | [ | ||
| (TMHD)SbBr5 | 8.33×10-3 | 62.8 | [ | |||
| (ATZ)(EA)4Pb3I11 | 2.22×10-4 | 1.94×1011 | 1 356 | [ | ||
| 0D | MA3Bi2I9 | 2.87×10-3 | 3.74×1010 | 1 947 | 83 | [ |
| Cs3Bi2I9 | 7.97×10-4 | 2.79×1010 | 1 652.3 | 130 | [ | |
| MA3Bi2I9 | 1.20×10-3 | 5.27×1011 | 10 620 | 0.62 | [ | |
| AG3Bi2I9 | 7.94×10-3 | 3.78×1010 | 5 791 | 2.6 | [ | |
| Cs3Bi2I8Br | 1.99×1010 | 1.33×104 | 28.6 | [ |
| [1] |
OU X Y, GAO F. Blossoms in perovskite planar X-ray detectors[J]. Nature Communications, 2024, 15(1): 5754.
DOI PMID |
| [2] | WU Y, FENG J S, YANG Z, et al. Halide perovskite: a promising candidate for next-generation X-ray detectors[J]. Advanced Science, 2022, 10(1): e2205536. |
| [3] | ZHOU Y, WANG X J, HE T Y, et al. Large-area perovskite-related copper halide film for high-resolution flexible X-ray imaging scintillation screens[J]. ACS Energy Letters, 2022, 7(2): 844-846. |
| [4] | WU H D, GE Y S, NIU G D, et al. Metal halide perovskites for X-ray detection and imaging[J]. Matter, 2021, 4(1): 144-163. |
| [5] | ZHANG Y, LIU Y, LIU S. Composition engineering of perovskite single crystals for high-performance optoelectronics[J]. Advanced Functional Materials, 2022, 33(9): 2210335. |
| [6] | HE X Y, DENG Y, OUYANG D C, et al. Recent development of halide perovskite materials and devices for ionizing radiation detection[J]. Chemical Reviews, 2023. |
| [7] |
PANG J C, WU H D, LI H, et al. Reconfigurable perovskite X-ray detector for intelligent imaging[J]. Nature Communications, 2024, 15(1): 1769.
DOI PMID |
| [8] | PAN Z W, WU L, JIANG J Z, et al. Searching for high-quality halide perovskite single crystals toward X-ray detection[J]. The Journal of Physical Chemistry Letters, 2022, 13(13): 2851-2861. |
| [9] | WU J M, WANG L X, FENG A B, et al. Self-powered FA0.55MA0.45PbI3 single-crystal perovskite X-ray detectors with high sensitivity[J]. Advanced Functional Materials, 2022, 32(9): 2109149. |
| [10] | ZHANG P, HUA Y Q, XU Y D, et al. Ultrasensitive and robust 120 keV hard X-ray imaging detector based on mixed-halide perovskite CsPbBr3- n I n single crystals[J]. Advanced Materials, 2022, 34(12): 2106562. |
| [11] | LIU N M, CHU D P, XIN X Q, et al. Unveiling the role of cesium in halide perovskite single crystal for stable and ultrasensitive X-ray detection[J]. Advanced Functional Materials, 2025: 2504203. |
| [12] | LIU Y C, ZHANG Y X, ZHU X J, et al. Triple-cation and mixed-halide perovskite single crystal for high-performance X-ray imaging[J]. Advanced Materials, 2021, 33(8): e2006010. |
| [13] | CHU D P, JIA B X, LIU N M, et al. Lattice engineering for stabilized black FAPbI3 perovskite single crystals for high-resolution X-ray imaging at the lowest dose[J]. Science Advances, 2023, 9(35): 2255. |
| [14] | LI L Q, TAO L T, WANG L X, et al. Monolithic integration of perovskite heterojunction on TFT backplanes through vapor deposition for sensitive and stable X-ray imaging[J]. Science Advances, 2024, 10(17): 8659. |
| [15] |
JIN P, TANG Y J, LI D W, et al. Realizing nearly-zero dark current and ultrahigh signal-to-noise ratio perovskite X-ray detector and image array by dark-current-shunting strategy[J]. Nature Communications, 2023, 14(1): 626.
DOI PMID |
| [16] | HAN M Y, XIAO Y R, ZHOU C, et al. Suppression of ionic and electronic conductivity by multilayer heterojunctions passivation toward sensitive and stable perovskite X-ray detectors[J]. Advanced Functional Materials, 2023, 33(35): 2303376. |
| [17] |
LIU D, ZHENG Y C, SUI X Y, et al. Universal growth of perovskite thin monocrystals from high solute flux for sensitive self-driven X-ray detection[J]. Nature Communications, 2024, 15(1): 2390.
DOI PMID |
| [18] | WANG W Z, MENG H, QI H Z, et al. Electronic-grade high-quality perovskite single crystals by a steady self-supply solution growth for high-performance X-ray detectors[J]. Advanced Materials, 2020, 32(33): e2001540. |
| [19] | WHITE L R W, KOSASIH F, SHERBURNE M, et al. Perovskite multiple quantum well superlattices: potentials and challenges[J]. ACS Energy Letters, 2024, 9(3): 835-842. |
| [20] | KAMAT P V, BISQUERT J, BURIAK J. Lead-free perovskite solar cells[J]. ACS Energy Letters, 2017, 2(4): 904-905. |
| [21] | XIE A Z, MADDALENA F, WITKOWSKI M E, et al. Library of two-dimensional hybrid lead halide perovskite scintillator crystals[J]. Chemistry of Materials, 2020, 32(19): 8530-8539. |
| [22] | CAO F, LIU Y, HONG E L, et al. Ultra-long 1D double perovskite CsAg0.4Cu1.6I3 single crystal for UV imaging memory[J]. Advanced Functional Materials, 2025: 2505569. |
| [23] | ECKHARDT K, BON V, GETZSCHMANN J, et al. Crystallographic insights into (CH3NH3)3(Bi2I9): a new lead-free hybrid organic-inorganic material as a potential absorber for photovoltaics[J]. Chemical Communications, 2016, 52(14): 3058-3060. |
| [24] | ZHANG X J, CHU D P, JIA B X, et al. Heterointerface design of perovskite single crystals for high-performance X-ray imaging[J]. Advanced Materials, 2024, 36(3): e2305513. |
| [25] | ZHANG X Y, JI C M, LIU X T, et al. Solution-grown large-sized single-crystalline 2D/3D perovskite heterostructure for self-powered photodetection[J]. Advanced Optical Materials, 2020, 8(19): 2000311. |
| [26] | HE Y H, PAN W T, GUO C J, et al. 3D/2D perovskite single crystals heterojunction for suppressed ions migration in hard X-ray detection[J]. Advanced Functional Materials, 2021, 31(49): 2104880. |
| [27] | ZHAO Z Q, HAO J L, JIA B X, et al. Epitaxial welding of 3D and 2D perovskite single crystals for direct-indirect energy-conversion X-ray detection and imaging[J]. ACS Energy Letters, 2024, 9(6): 2758-2766. |
| [28] |
DUNLAP-SHOHL W A, ZHOU Y Y, PADTURE N P, et al. Synthetic approaches for halide perovskite thin films[J]. Chemical Reviews, 2019, 119(5): 3193-3295.
DOI |
| [29] | JUNG M, JI S G, KIM G, et al. Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications[J]. Chemical Society Reviews, 2019, 48(7): 2011-2038. |
| [30] | LIU Y C, ZHANG Y X, YANG Z, et al. Low-temperature-gradient crystallization for multi-inch high-quality perovskite single crystals for record performance photodetectors[J]. Materials Today, 2019, 22: 67-75. |
| [31] | LIU Y C, YANG Z, LIU S F. Recent progress in single-crystalline perovskite research including crystal preparation, property evaluation, and applications[J]. Advanced Science, 2017, 5(1): 1700471. |
| [32] | DANG Y Y, LIU Y, SUN Y X, et al. Bulk crystal growth of hybrid perovskite material CH3NH3PbI3[J]. CrystEngComm, 2015, 17(3): 665-670. |
| [33] | DONG Q F, FANG Y J, SHAO Y C, et al. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals[J]. Science, 2015, 347(6225): 967-970. |
| [34] | SHI D, ADINOLFI V, COMIN R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science, 2015, 347(6221): 519-522. |
| [35] | LIU Y C, ZHANG Y X, ZHAO K, et al. A 1 300 mm ultrahigh-performance digital imaging assembly using high-quality perovskite single crystals[J]. Advanced Materials, 2018: e1707314. |
| [36] | LIU Y C, REN X D, ZHANG J, et al. 120 mm single-crystalline perovskite and wafers: towards viable applications[J]. Science China Chemistry, 2017, 60(10): 1367-1376. |
| [37] | LIU Y C, SUN J K, YANG Z, et al. 20-mm-large single-crystalline formamidinium-perovskite wafer for mass production of integrated photodetectors[J]. Advanced Optical Materials, 2016, 4(11): 1829-1837. |
| [38] | LIU Y C, ZHANG Y X, YANG Z, et al. Thinness- and shape-controlled growth for ultrathin single-crystalline perovskite wafers for mass production of superior photoelectronic devices[J]. Advanced Materials, 2016, 28(41): 9204-9209. |
| [39] | LIU Y C, YANG Z, CUI D, et al. Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization[J]. Advanced Materials, 2015, 27(35): 5176-5183. |
| [40] | SONG J Z, CUI Q Z, LI J H, et al. Ultralarge all-inorganic perovskite bulk single crystal for high-performance visible-infrared dual-modal photodetectors[J]. Advanced Optical Materials, 2017, 5(12): 1700157. |
| [41] | STOUMPOS C C, MALLIAKAS C D, PETERS J A, et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection[J]. Crystal Growth & Design, 2013, 13(7): 2722-2727. |
| [42] | HE Y H, STOUMPOS C C, HADAR I, et al. Demonstration of energy-resolved γ-ray detection at room temperature by the CsPbCl3 perovskite semiconductor[J]. Journal of the American Chemical Society, 2021, 143(4): 2068-2077. |
| [43] | HUA Y Q, ZHANG G D, SUN X, et al. Suppressed ion migration for high-performance X-ray detectors based on atmosphere-controlled EFG-grown perovskite CsPbBr3 single crystals[J]. Nature Photonics, 2024, 18(8): 870-877. |
| [44] | PAN L, LIU Z F, WELTON C, et al. Ultrahigh-flux X-ray detection by a solution-grown perovskite CsPbBr3 single-crystal semiconductor detector[J]. Advanced Materials, 2023, 35(25): e2211840. |
| [45] | FENG Y X, PAN L, WEI H T, et al. Low defects density CsPbBr3 single crystals grown by an additive assisted method for gamma-ray detection[J]. Journal of Materials Chemistry C, 2020, 8(33): 11360-11368. |
| [46] | ZHANG H J, WANG F B, LU Y F, et al. High-sensitivity X-ray detectors based on solution-grown caesium lead bromide single crystals[J]. Journal of Materials Chemistry C, 2020, 8(4): 1248-1256. |
| [47] | SHI R X, PI J C, CHU D P, et al. Promoting band splitting through symmetry breaking in inorganic halide perovskite single crystals for high-sensitivity X-ray detection[J]. ACS Energy Letters, 2023, 8(11): 4836-4847. |
| [48] | XUE Z X, WEI Y R, LI H, et al. Additive-enhanced crystallization of inorganic perovskite single crystals for high-sensitivity X-ray detection[J]. Small, 2023, 19(18): e2207588. |
| [49] | PENG J L, XIA C Q, XU Y L, et al. Crystallization of CsPbBr3 single crystals in water for X-ray detection[J]. Nature Communications, 2021, 12(1): 1531. |
| [50] | LI X T, HOFFMAN J M, KANATZIDIS M G. The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency[J]. Chemical Reviews, 2021, 121(4): 2230-2291. |
| [51] | MA D W, FU Y P, DANG L N, et al. Single-crystal microplates of two-dimensional organic-inorganic lead halide layered perovskites for optoelectronics[J]. Nano Research, 2017, 10(6): 2117-2129. |
| [52] | LÉDÉE F, TRIPPÉ-ALLARD G, DIAB H, et al. Fast growth of monocrystalline thin films of 2D layered hybrid perovskite[J]. CrystEngComm, 2017, 19(19): 2598-2602. |
| [53] | LIU W W, XING J, ZHAO J X, et al. Giant two-photon absorption and its saturation in 2D organic-inorganic perovskite[J]. Advanced Optical Materials, 2017, 5(7): 1601045. |
| [54] |
LIU Y C, ZHANG Y X, YANG Z, et al. Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors[J]. Nature Communications, 2018, 9(1): 5302.
DOI PMID |
| [55] | ZHANG Y X, LIU Y C, XU Z, et al. Two-dimensional (PEA)2PbBr4 perovskite single crystals for a high performance UV-detector[J]. Journal of Materials Chemistry C, 2019, 7(6): 1584-1591. |
| [56] | LI M, HAN S, TENG B, et al. Minute-scale rapid crystallization of a highly dichroic 2D hybrid perovskite crystal toward efficient polarization-sensitive photodetector[J]. Advanced Optical Materials, 2020, 8(9): 2000149. |
| [57] | LI H Y, SONG J M, PAN W T, et al. Sensitive and stable 2D perovskite single-crystal X-ray detectors enabled by a supramolecular anchor[J]. Advanced Materials, 2020, 32(40): 2003790. |
| [58] | ZHANG B B, ZHENG T, YOU J X, et al. Electron-phonon coupling suppression by enhanced lattice rigidity in 2D perovskite single crystals for high-performance X-ray detection[J]. Advanced Materials, 2023, 35(7): 2208875. |
| [59] |
LI J Z, WANG J, MA J Q, et al. Self-trapped state enabled filterless narrowband photodetections in 2D layered perovskite single crystals[J]. Nature Communications, 2019, 10(1): 806.
DOI PMID |
| [60] |
LENG K, ABDELWAHAB I, VERZHBITSKIY I, et al. Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation[J]. Nature Materials, 2018, 17(10): 908-914.
DOI PMID |
| [61] | LIANG Y Q, ZHAO Z Q, HAO J L, et al. Interlamellar-spacing engineering of stable and toxicity-reduced 2D perovskite single crystal for high-resolution X-ray imaging[J]. Nano Letters, 2024, 24(27): 8436-8444. |
| [62] | ZHANG X Y, ZHU T T, JI C M, et al. In situ epitaxial growth of centimeter-sized lead-free (BA)2CsAgBiBr7/Cs2AgBiBr6 heterocrystals for self-driven X-ray detection[J]. Journal of the American Chemical Society, 2021, 143(49): 20802-20810. |
| [63] | MA C, LI H, CHEN M, et al. Water-resistant lead-free perovskitoid single crystal for efficient X-ray detection[J]. Advanced Functional Materials, 2022, 32(30): 2202160. |
| [64] | WANG B Q, YANG X, LI R, et al. One-dimensional CsCu2I3 single-crystal X-ray detectors[J]. ACS Energy Letters, 2023, 8(10): 4406-4413. |
| [65] | ZHENG G Y, WU H D, HE S, et al. High-performing direct X-ray detection made of one-dimensional perovskite-like (TMHD)SbBr5 single crystal with anisotropic response[J]. Small, 2025, 21(5): 2408720. |
| [66] | TANG X N, FAN Q S, LIU G N, et al. Exceptional one-dimensional hybrid lead halide for high-performance X-ray detection through hydrogen bond enhanced charge transport[J]. Chinese Chemical Letters, 2025: 111036. |
| [67] | ABULIKEMU M, OULD-CHIKH S, MIAO X H, et al. Optoelectronic and photovoltaic properties of the air-stable organohalide semiconductor (CH3NH3)3Bi2I9[J]. Journal of Materials Chemistry A, 2016, 4(32): 12504-12515. |
| [68] | MCCALL K M, STOUMPOS C C, KOSTINA S S, et al. Strong electron-phonon coupling and self-trapped excitons in the defect halide perovskites A3M2I9 (A=Cs, Rb; M=Bi, Sb)[J]. Chemistry of Materials, 2017, 29(9): 4129-4145. |
| [69] | SUN Q H, XU Y D, ZHANG H J, et al. Optical and electronic anisotropies in perovskitoid crystals of Cs3Bi2I9 studies of nuclear radiation detection[J]. Journal of Materials Chemistry A, 2018, 6(46): 23388-23395. |
| [70] | ZHANG H J, XU Y D, SUN Q H, et al. Lead free halide perovskite Cs3Bi2I9 bulk crystals grown by a low temperature solution method[J]. CrystEngComm, 2018, 20(34): 4935-4941. |
| [71] | HAQUE M A, GANDI A N, MOHANRAMAN R, et al. A 0D lead-free hybrid crystal with ultralow thermal conductivity[J]. Advanced Functional Materials, 2019, 29(13): 1809166. |
| [72] | LIU Y C, XU Z, YANG Z, et al. Inch-size 0D-structured lead-free perovskite single crystals for highly sensitive stable X-ray imaging[J]. Matter, 2020, 3(1): 180-196. |
| [73] | ZHANG Y X, LIU Y C, XU Z, et al. Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection[J]. Nature Communications, 2020, 11(1): 2304. |
| [74] |
ZHENG X J, ZHAO W, WANG P, et al. Ultrasensitive and stable X-ray detection using zero-dimensional lead-free perovskites[J]. Journal of Energy Chemistry, 2020, 49: 299-306.
DOI |
| [75] | LI W, XIN D Y, TIE S J, et al. Zero-dimensional lead-free FA3Bi2I9 single crystals for high-performance X-ray detection[J]. The Journal of Physical Chemistry Letters, 2021, 12(7): 1778-1785. |
| [76] | LI W G, WANG X D, LIAO J F, et al. Enhanced on-off ratio photodetectors based on lead-free Cs3Bi2I9 single crystal thin films[J]. Advanced Functional Materials, 2020, 30(12): 1909701. |
| [77] | LI Z Q, LIU X Y, ZUO C L, et al. Supersaturation-controlled growth of monolithically integrated lead-free halide perovskite single-crystalline thin film for high-sensitivity photodetectors[J]. Advanced Materials, 2021, 33(41): e2103010. |
| [78] | LI X, DU X Y, ZHANG P, et al. Lead-free halide perovskite Cs3Bi2Br9 single crystals for high-performance X-ray detection[J]. Science China Materials, 2021, 64(6): 1427-1436. |
| [79] | LI X, ZHANG P, HUA Y Q, et al. Ultralow detection limit and robust hard X-ray imaging detector based on inch-sized lead-free perovskite Cs3Bi2Br9 single crystals[J]. ACS Applied Materials & Interfaces, 2022, 14(7): 9340-9351. |
| [80] | ZHANG Y X, HAO J L, ZHAO Z Q, et al. Lead-free perovskite single crystal linear array detector for high-resolution X-ray imaging[J]. Advanced Materials, 2024, 36(24): e2310831. |
| [81] | CHEN M, DONG X F, CHU D P, et al. Interlayer-spacing engineering of lead-free perovskite single crystal for high-performance X-ray imaging[J]. Advanced Materials, 2023, 35(18): e2211977. |
| [82] | WEI H T, FANG Y J, MULLIGAN P, et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals[J]. Nature Photonics, 2016, 10(5): 333-339. |
| [83] | PAN W C, WU H D, LUO J J, et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit[J]. Nature Photonics, 2017, 11(11): 726-732. |
| [84] | YE F, LIN H, WU H D, et al. High-quality cuboid CH3NH3PbI3 single crystals for high performance X-ray and photon detectors[J]. Advanced Functional Materials, 2019, 29(6): 1806984. |
| [85] | HUANG Y M, QIAO L, JIANG Y Z, et al. A-site cation engineering for highly efficient MAPbI3 single-crystal X-ray detector[J]. Angewandte Chemie (International Edition), 2019, 58(49): 17834-17842. |
| [86] | SONG Y L, LI L Q, HAO M W, et al. Elimination of interfacial-electrochemical-reaction-induced polarization in perovskite single crystals for ultrasensitive and stable X-ray detector arrays[J]. Advanced Materials, 2021, 33(52): 2103078. |
| [87] | JIANG J Z, XIONG M, FAN K, et al. Synergistic strain engineering of perovskite single crystals for highly stable and sensitive X-ray detectors with low-bias imaging and monitoring[J]. Nature Photonics, 2022, 16(8): 575-581. |
| [88] | YANG X Y, SONG Y L, WANG L X, et al. In-line tempering eliminates the domain boundary in perovskite single crystals for high-energy resolution ionizing radiation detectors[J]. Science Advances, 2024, 10(51): 6866. |
| [89] | CHU D P, LIU N M, XIE S H, et al. Stable and ultrasensitive X-ray detectors based on oriented single-crystal perovskite rods[J]. Advanced Materials, 2025, 37(27): e2500101. |
| [90] | JIA B X, CHU D P, LI N, et al. Airflow-controlled crystallization for a multi-inch 2D halide perovskite single-crystal scintillator for fast high-resolution X-ray imaging[J]. ACS Energy Letters, 2023, 8(1): 590-599. |
| [91] | SHI E Z, YUAN B, SHIRING S B, et al. Two-dimensional halide perovskite lateral epitaxial heterostructures[J]. Nature, 2020, 580(7805): 614-620. |
| [92] | MA C, GAO L L, XU Z, et al. Centimeter-sized 2D perovskitoid single crystals for efficient X-ray photoresponsivity[J]. Chemistry of Materials, 2022, 34(4): 1699-1709. |
| [93] | FENG X L, ZHANG L, ZHANG B B, et al. Ligand-assisted growth of 2D perovskite single crystal for highly sensitive X-ray detectors[J]. Advanced Functional Materials, 2024, 34(37): 2402166. |
| [94] | SONG X, COHEN H, YIN J, et al. Low dimensional, metal-free, hydrazinium halide perovskite-related single crystals and their use as X-ray detectors[J]. Small, 2023, 19(30): e2300892. |
| [95] | LIU Y C, ZHANG Y X, YANG Z, et al. Large lead-free perovskite single crystal for high-performance coplanar X-ray imaging applications[J]. Advanced Optical Materials, 2020, 8(19): 2000814. |
| [96] | LI X, ZHANG G D, HUA Y Q, et al. Dimensional and optoelectronic tuning of lead-free perovskite Cs3Bi2I9- n Br n single crystals for enhanced hard X-ray detection[J]. Angewandte Chemie International Edition, 2023, 62(50): e202315817. |
| [1] | ZHANG Leilei, XUE Zexu, SUN Lian, LIU Yang, WANG Lukai, WANG Zungang. Metal Halide Perovskite Single Crystal Scintillators for Radiation Detection [J]. Journal of Synthetic Crystals, 2025, 54(8): 1330-1351. |
| [2] | DOU Ying, WANG Yingmin, GAO Yanzhao, CHENG Hongjuan. Impact of Selenium Addition on Electrical and Optical Properties of CdSe Single Crystal [J]. Journal of Synthetic Crystals, 2025, 54(8): 1403-1409. |
| [3] | ZHANG Shuyi, LIU Gengling, WANG Hao, LU Yue, JIANG Xianyuan, LI Wenzhuo, LIU Cong, LYU Yingbo, WU Zhongchen, LIU Dong, CHEN Yao. Research Progress of Tin-Based Perovskite Crystals and Devices [J]. Journal of Synthetic Crystals, 2025, 54(7): 1189-1207. |
| [4] | CHEN Ran, ZHAO Xiao, MENG Gang, GNATYUK Volodymyr, NI Youbao, WANG Shimao. Additive-Assisted Growth of CsPbBr3 Single Crystals and Its γ-Ray Detection Performance [J]. Journal of Synthetic Crystals, 2025, 54(7): 1238-1244. |
| [5] | XU Zhuangjie, BA Yanshuang, XI He, BAI Fuhui, CHEN Dazheng, ZHU Weidong, ZHANG Chunfu. Growth and X-Ray Detection Properties of High-Quality Perovskite Single Crystals [J]. Journal of Synthetic Crystals, 2025, 54(7): 1229-1237. |
| [6] | YANG Fan, ZHANG Siyuan, DONG Wupei, WANG Xizheng, ZHOU Ming, JU Dianxing. Growth and High Resolution X-Ray Imaging of Inch-Size (C24H20P)2MnBr4 Single Crystalline Film [J]. Journal of Synthetic Crystals, 2025, 54(7): 1289-1296. |
| [7] | MA Wenjun, ZHANG Guodong, SUN Xue, LIU Hongjie, LIU Jiaxin, TAO Xutang. Recent Advances in Halide Perovskite Semiconductor Single Crystals for Radiation Detection Applications [J]. Journal of Synthetic Crystals, 2025, 54(7): 1091-1099. |
| [8] | ZHENG Luying, WANG Fang, XU Xieming, WANG Shuaihua, WU Shaofan. High-Efficiency X-Ray Detection of Layered Perovskite Single Crystals Based on Ruddlesden-Popper (RP)-Type CHA2PbBr4 [J]. Journal of Synthetic Crystals, 2025, 54(7): 1272-1281. |
| [9] | ZHAO Hao, YU Bowen, LI Qi, LI Guangqing, LIU Yiyuan, LIN Na, LI Yang, MU Wenxiang, JIA Zhitai. Growth of LiGa5O8 Single Crystal Thin Films and Their Conductive Mechanism by the Mist-CVD Method [J]. Journal of Synthetic Crystals, 2025, 54(6): 997-1004. |
| [10] | WANG Zhenyou, MAO Changyu, CHEN Weihao, XU Junjie, YU Xuezhou, WU Haixin. Fabrication of ϕ60 mm Large-Size Infrared Nonlinear BaGa4Se7 Crystals and Devices [J]. Journal of Synthetic Crystals, 2025, 54(6): 909-911. |
| [11] | DU Qingbo, YANG Yapeng, GAO Xudong, ZHANG Zhi, ZHAO Xiaoyu, WANG Huiqi, LIU Yier, LI Guoqiang. Research Progress of Wide Band Gap Semiconductor Silicon Carbide Based Nuclear Radiation Detector [J]. Journal of Synthetic Crystals, 2025, 54(5): 737-756. |
| [12] | SHAO Meifang, FENG Jinyang, HOU Tianjiang, MA Xiao. Properties of Gadolinium Gallium Garnet Substituded with Different Stoichiometric Ratios of Ca2+/Mg2+/Zr4+ [J]. Journal of Synthetic Crystals, 2025, 54(4): 543-552. |
| [13] | QI Zhanguo, WANG Shouzhi, LI Qiubo, WANG Zhongxin, SHAO Huihui, LIU Lei, WANG Guodong, SUN Defu, YU Huidong, JIANG Kaize, ZHANG Shuang, CHEN Xiufang, XU Xiangang, ZHANG Lei. Preparation of 4-Inch High-Quality GaN Single Crystal Substrates [J]. Journal of Synthetic Crystals, 2025, 54(4): 717-720. |
| [14] | WANG Junlan, LI Zaoyang, YANG Yao, QI Chongchong, LIU Lijun. Evaluation and Control of Crystallization Interface Deformation in the Growth of 6-Inch β-Ga2O3 Crystals by EFG Method [J]. Journal of Synthetic Crystals, 2025, 54(3): 396-406. |
| [15] | HUO Xiaoqing, ZHANG Shengnan, ZHOU Jinjie, WANG Yingmin, CHENG Hongjuan, SUN Qisheng. Preparation and Properties of 3~4 Inch Fe Doped β-Ga2O3 Single Crystal with High Resistance [J]. Journal of Synthetic Crystals, 2025, 54(3): 407-413. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS