
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (12): 2037-2059.DOI: 10.16553/j.cnki.issn1000-985x.2025.0127
• 综合评述 • 下一篇
卢正轩1,2(
), 李忱2, 周超1, 卢远豪2, 李浩潮2, 柯善明1(
), 唐叔贤2,3,4
收稿日期:2025-06-12
出版日期:2025-12-20
发布日期:2026-01-04
通信作者:
柯善明,博士,教授。E-mail:ksm@gzhu.edu.cn
作者简介:卢正轩(2002—),男,广东省人,硕士研究生。E-mail:2112419039@e.gzhu.edu.cn
基金资助:
LU Zhengxuan1,2(
), LI Chen2, ZHOU Chao1, LU Yuanhao2, LI Haochao2, KE Shanming1(
), TONG Shukyin2,3,4
Received:2025-06-12
Online:2025-12-20
Published:2026-01-04
摘要: 碳化硅(SiC)作为第三代宽禁带半导体材料,因优异的电学、热学与力学性能,在高温、高压、高频功率电子器件中具有广泛的应用前景。作为SiC的重要多型之一,立方相碳化硅(3C-SiC)具有更高的电子迁移率、更低的界面陷阱密度及更优的沟道性能,在中等电压范围内展现出较强的器件竞争力。本文综述了3C-SiC外延生长的研究进展,重点比较了化学气相沉积与升华外延法在生长工艺、缺陷演化及衬底选择方面的技术特点,分析了点缺陷、堆垛层错、反相畴界、表面凸起和应力等关键结构缺陷的形成机制及其对材料与器件性能的影响。此外,本文还总结了基于3C-SiC的功率二极管、MOSFET及异质结构器件的最新研究成果,展望了通过衬底工程、缺陷调控及工艺优化等手段提升3C-SiC外延质量与器件性能的未来发展方向。
中图分类号:
卢正轩, 李忱, 周超, 卢远豪, 李浩潮, 柯善明, 唐叔贤. 立方碳化硅外延生长的研究进展[J]. 人工晶体学报, 2025, 54(12): 2037-2059.
LU Zhengxuan, LI Chen, ZHOU Chao, LU Yuanhao, LI Haochao, KE Shanming, TONG Shukyin. Research Progress on the Epitaxial Growth of Cubic Silicon Carbide[J]. Journal of Synthetic Crystals, 2025, 54(12): 2037-2059.
图1 两种典型化学气相沉积技术示意图。(a)MPCVD[22];(b)混合激光化学气相沉积[26]
Fig.1 Schematic of two typical chemical vapor deposition techniques. (a) MPCVD[22]; (b) hybrid laser-assisted CVD[26]
图2 3C-SiC异质外延生长中两步/交替供气工艺及缓冲层结构示意图。(a)SiC外延生长前供气过程示意图[31];(b)样品结构示意图:Si(001)衬底、Si1-x Ge x 缓冲层、Si封顶层和3C-SiC层[33];(c)ASD中供气过程示意图[38]
Fig.2 Schematic overview of two-step/alternate-supply epitaxial processes and buffer-layer architecture for 3C-SiC heteroepitaxy. (a) Schematic diagrams of the gas supply procedure before the SiC epitaxial growth[31]; (b) schematic of the sample structure: Si(001) substrate, Si1-x Ge x buffer layer, Si capping layer and a 3C-SiC layer[33]; (c) schematic illustration of temporal gas introduction within the ASD scheme[38]
图4 Si衬底SEM照片。(a)ISP的SEM照片[47];(b)在1 100 ℃下H2退火处理前/后Si沟槽截面SEM照片[50]
Fig.4 SEM image of a silicon substrates. (a) SEM images of ISP[47]; (b) cross-sectional SEM images of the Si trench profile before and after being subject to 1 100 ℃ H2 annealing[50]
图6 4H-SiC同质外延外延层的截面SEM照片(a)~(d)及SEM照片和EDS元素分析(e)~(h)[72]
Fig.6 4H-SiC homogeneous epitaxy cross-sectional SEM images (a)~(d) and SEM images and EDS element analysis (e)~(h) of the epitaxial layer[72]
| Performance | CVD | SE | |||
|---|---|---|---|---|---|
| Si | SiC | Others | Si | SiC | |
| Epitaxial growth rate | 2~40 μm/h | 5~278 μm/h[ | 7~8 nm/cycle[ | 120 μm/h[ | 450 μm/h[ |
| Dislocation density | SFs=103~105 cm-1[ | No DPBs[ | Not mentioned | Not mentioned | No DPBs[ |
| Step structure | Spiral structure | Spiral structure with six bilayer steps[ | Not mentioned | Not mentioned | Step-flow[ |
| Stress level | High | Low | Low (Graphite substrate) | High | Low |
表1 CVD与SE工艺在不同衬底上生长3C-SiC的关键参数对比
Table 1 Comparison of 3C-SiC characteristics grown by CVD and SE processes on different substrates
| Performance | CVD | SE | |||
|---|---|---|---|---|---|
| Si | SiC | Others | Si | SiC | |
| Epitaxial growth rate | 2~40 μm/h | 5~278 μm/h[ | 7~8 nm/cycle[ | 120 μm/h[ | 450 μm/h[ |
| Dislocation density | SFs=103~105 cm-1[ | No DPBs[ | Not mentioned | Not mentioned | No DPBs[ |
| Step structure | Spiral structure | Spiral structure with six bilayer steps[ | Not mentioned | Not mentioned | Step-flow[ |
| Stress level | High | Low | Low (Graphite substrate) | High | Low |
| Method | Electron mobility/(cm2·V-1·s-1) | Carrier lifetime | Breakdown field/(MV·cm-1) |
|---|---|---|---|
| CVD | 800~1 200 | 0.5~20 ns | 2.0~3.0 |
| SE | 900~1 100 | 0.1~1.0 μs | 2.5~3.5 |
表2 不同生长方法所获得的3C-SiC薄膜的电学性能
Table 2 Electrical properties of 3C-SiC thin films prepared by different growth methods
| Method | Electron mobility/(cm2·V-1·s-1) | Carrier lifetime | Breakdown field/(MV·cm-1) |
|---|---|---|---|
| CVD | 800~1 200 | 0.5~20 ns | 2.0~3.0 |
| SE | 900~1 100 | 0.1~1.0 μs | 2.5~3.5 |
图9 3C-SiC点缺陷示意图[89]。(a)3C-SiC 晶胞;(b)3C-SiC 超胞;(c)C空位缺陷;(d)Si空位缺陷;(e)Si反位缺陷;(f)C反位缺陷;(g)C间隙缺陷;(h)Si间隙缺陷
Fig.9 Schematic of point defects in 3C-SiC[89]. (a) Unit cell of 3C-SiC; (b) supercell of 3C-SiC; (c) VC; (d) VSi; (e) CSi; (f) SiC; (g) Cint; (h) Siint
图10 TEM横截面照片。(a)SFs缺陷相遇时湮灭;(b)SFs的产生;(c)SFs的末端没有如(a)中显示的湮灭过程[78];(d)3C-SiC 层在(110)上的横截面TEM照片。上半部分:位于(1ˉ11)平面的SF显示为倾斜45°的线条,而位于(111)平面的SF则显示为梯形。下半部分:HAADF-STEM图像显示了在3C-SiC中观察到的三种SF;它们分别由1、2或3个断层原子层组成[93]
Fig.10 TEM cross-section images. (a) Annihilation of SFs when these defects meet; (b) generation of SFs; (c) end of SFs without the annihilation process reported in (a)[78]; (d) cross-section TEM images of the 3C-SiC layer in the (110) projection, top part: SFs lying in the (1ˉ11) plane appear as lines tilted 45° off, while SFs lying in the (111) plane are visible as trapezoidal-shaped. Bottom part: HAADF-STEM images showing the three kinds of SFs observed in 3C-SiC. They consist of 1, 2, or 3 faulted atomic layers[93]
图11 IDB STEM图像及示意图。(a)相干半极性(1ˉ10)面的倒置畴界(IDB)STEM图像[97];(b)反相边界(APB)(110)面的正交视图[98]
Fig.11 STEM images and schematic illustration of IDB. (a) STEM image of a coherent semipolar (1ˉ10) inverted domain boundary (IDB)[97]; (b) orthogonal view of an antiphase boundary (110)[98]
图12 凸起缺陷俯视图及截面图[84]。(a)凸起缺陷造成表面凹凸不平的俯视图;(b)单个凸起及其侧面的边缘长度可达3 mm;(c)凹凸不平的表面会导致六方碳化硅在{111}表面成核;(d)在横截面上,中心切割的凸起缺陷呈深色的漏斗状结构,从中心切下的凸起只有部分可见,而且似乎不是从原始的Si/3C-SiC界面开始的;(e)在凸起缺陷上形成的6H-SiC结晶的放大视图;(f)凸起缺陷周围形成的多型变化(透明)的放大视图
Fig.12 Top-view and cross-sectional images of the protruding defect[84]. (a) Top view of the surface rugged by protrusion defects; (b) individual protrusions together with their flanks can reach an edge length of up to 3 mm; (c) rugged surface causes the nucleation of hexagonal SiC on {111} surfaces; (d) in the cross-section, center-cut protrusion defects are visible as dark, funnel-shaped structures, protrusions cut off center are only partially visible and do not appear to start at the original Si/3C-SiC interface; (e) magnified view of a 6H-SiC crystallite formed on a protrusion defect; (f) magnified view of a polytype change (transparent) formed around protrusion defects
图13 凸起缺陷的SEM照片,横截面图及3D结构示意图[106]。(a)在平面图中30 μm厚外延层中凸起的SEM照片;(b)3 μm厚外延层的晶片解理后获得的横截面图;(c)凸起的3D结构
Fig.13 SEM image, cross-sectional view and 3D schematic of the protruding defect[106]. (a) SEM image of a protrusion in a 30 μm thick epitaxial layer in plan view; (b) cross-view obtained after cleavage of the wafer for 3 μm thick epilayer; (c) 3D structure of the protrusion
| Structure | Channel | μFE/(cm2·V-1·s-1) | BV/V | Reference |
|---|---|---|---|---|
| Lateral | 2×1017 cm-3 p-type epi | ≈165 | — | [ |
| Lateral | 1×1016 cm-3 p-type epi | ≈229 | — | [ |
| Lateral | 1×1018 cm-3 Al implanted | ≈80 | — | [ |
| Vertical | 1×1018 cm-3 Al implanted | ≈28 | ≈100 | [ |
| Vertical | 1×1018 cm-3 Al implanted | ≈45 | 550~600 | [ |
| Vertical | Al implanted | >100 | — | [ |
表3 3C-SiC MOSFET正向和反向性能的文献数据汇总
Table 3 A summary of literature data on the forward and reverse performance of 3C-SiC MOSFET
| Structure | Channel | μFE/(cm2·V-1·s-1) | BV/V | Reference |
|---|---|---|---|---|
| Lateral | 2×1017 cm-3 p-type epi | ≈165 | — | [ |
| Lateral | 1×1016 cm-3 p-type epi | ≈229 | — | [ |
| Lateral | 1×1018 cm-3 Al implanted | ≈80 | — | [ |
| Vertical | 1×1018 cm-3 Al implanted | ≈28 | ≈100 | [ |
| Vertical | 1×1018 cm-3 Al implanted | ≈45 | 550~600 | [ |
| Vertical | Al implanted | >100 | — | [ |
图14 3C-SiC传感器工作原理及制作过程。(a)3C-SiC热流传感器的工作原理;(b)3C-SiC呼吸传感器的制造步骤:1)制备Si(100)晶片,2)在Si晶片上生长3C-SiC,3)在3C-SiC顶部沉积Al,4)光刻,5)Al蚀刻,6)将3C-SiC/Si晶片切割成条状,7)将样品连接到可拉伸PDMS基板上并进行互连;(c)生长在Si(100)衬底上的p-3C-SiC晶体结构、TEM照片(左)和SAED图像(右);(d)样品附着在PDMS衬底上的光学图像[129]
Fig.14 Working principle and fabrication process of 3C-SiC sensors. (a) Working principle of the 3C-SiC thermal flow sensors; (b) fabrication steps of the 3C-SiC respiratory sensor: 1) preparing Si(100) wafer, 2) grow of 3C-SiC on Si wafer, 3) deposition of Al on the top of 3C-SiC, 4) photolithography, 5) etching Al, 6) dicing strips of the 3C-SiC/Si wafer, 7) sample was attached to stretchable PDMS substrate and making interconnection; (c) crystal structure of p-3C-SiC grown on Si(100) substrate, TEM image (left), and SAED image (right); (d) optical image of the sample attached to the (polydimethylsiloxane) PDMS substrate[129]
| MOSFET | Bulk mobility, | Breakdown field, | Channel mobility, |
|---|---|---|---|
| μ/(cm2·V-1·s-1) | Ebr/(MV·cm-1) | μ/(cm2·V-1·s-1) | |
| 3C-SiC MOSFET | 0~1 100 | 1.5 | 100~370 |
| 4H-SiC MOSFET | 20~900 | 2.1 | 20~180 |
| GaN MOSFET | 1 000~1 500 | 3.3 | 150~250 |
表4 3C-SiC MOSFET、4H-SiC MOSFET及GaN MOSFET性能比较
Table 4 Performance comparison between 3C-SiC MOSFET, 4H-SiC MOSFET and GaN MOSFET
| MOSFET | Bulk mobility, | Breakdown field, | Channel mobility, |
|---|---|---|---|
| μ/(cm2·V-1·s-1) | Ebr/(MV·cm-1) | μ/(cm2·V-1·s-1) | |
| 3C-SiC MOSFET | 0~1 100 | 1.5 | 100~370 |
| 4H-SiC MOSFET | 20~900 | 2.1 | 20~180 |
| GaN MOSFET | 1 000~1 500 | 3.3 | 150~250 |
| [1] | KATRE A, CARRETE J, DONGRE B, et al. Exceptionally strong phonon scattering by B substitution in cubic SiC[J]. Physical Review Letters, 2017, 119(7): 075902. |
| [2] | NAKAMURA D, GUNJISHIMA I, YAMAGUCHI S, et al. Ultrahigh-quality silicon carbide single crystals[J]. Nature, 2004, 430(7003): 1009-1012. |
| [3] | SINGH S, CHAUDHARY T, KHANNA G. Recent advancements in wide band semiconductors (SiC and GaN) technology for future devices[J]. Silicon, 2022, 14(11): 5793-5800. |
| [4] | EDDY C R, GASKILL D K. Silicon carbide as a platform for power electronics[J]. Science, 2009, 324(5933): 1398-1400. |
| [5] | LAMBRECHT W R L, LIMPIJUMNONG S, RASHKEEV S N, et al. Electronic band structure of SiC polytypes: a discussion of theory and experiment[J]. Physica Status Solidi (b), 1997, 202(1): 5-33. |
| [6] | BECHSTEDT F, KÄCKELL P, ZYWIETZ A, et al. Polytypism and properties of silicon carbide[J]. Physica Status Solidi (b), 1997, 202(1): 35-62. |
| [7] | TANAKA H, HIROSAKI N, NISHIMURA T, et al. Nonequiaxial grain growth and polytype transformation of sintered α-silicon carbide and β-silicon carbide[J]. Journal of the American Ceramic Society, 2003, 86(12): 2222-2224. |
| [8] | CHENG Z, LIANG J B, KAWAMURA K, et al. High thermal conductivity in wafer-scale cubic silicon carbide crystals[J]. Nature Communications, 2022, 13(1): 7201. |
| [9] | DAOUD S, BOUARISSA N, REKAB-DJABRI H, et al. Structural and thermo-physical properties of 3C-SiC: high-temperature and high-pressure effects[J]. Silicon, 2022, 14(11): 6299-6309. |
| [10] | WANG J J, YAN W J, GAO T H, et al. Analysis of the magnetic and optical properties of (Fe, V)-co-doped 3C-SiC using first-principles calculations[J]. Journal of Physics and Chemistry of Solids, 2023, 181: 111527. |
| [11] | LUQUE A, MARTÍ A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels[J]. Physical Review Letters, 1997, 78(26): 5014-5017. |
| [12] | HAN Y C, YIN S H, ZHENG J R, et al. Epitaxial growth of graphene on SiC by thermal shock annealing within seconds[J]. Advanced Functional Materials, 2024, 34(4): 2307298. |
| [13] | MONACO G, GAROLI D, NATALI M, et al. Synthesis of heteroepytaxial 3C-SiC by means of PLD[J]. Applied Physics A, 2011, 105(1): 225-231. |
| [14] | ZEKENTES K, TSAGARAKI K. Surfactant-mediated MBE growth of β-SiC on Si substrates[J]. Materials Science and Engineering: B, 1999, 61: 559-562. |
| [15] | JENNINGS V J, SOMMER A, CHANG H C. The epitaxial growth of silicon carbide[J]. Journal of the Electrochemical Society, 1966, 113(7): 728. |
| [16] | TAIROV Y M, TSVETKOV V F, LILOV S K, et al. Studies of growth kinetics and polytypism of silicon carbide epitaxial layers grown from the vapour phase[J]. Journal of Crystal Growth, 1976, 36(1): 147-151. |
| [17] | CAMPBELL R B, CHU T L. Epitaxial growth of silicon carbide by the thermal reduction technique[J]. Journal of the Electrochemical Society, 1966, 113(8): 825. |
| [18] | SUZUKI A, FURUKAWA K, HIGASHIGAKI Y, et al. Epitaxial growth of β-SiC single crystals by successive two-step CVD[J]. Journal of Crystal Growth, 1984, 70(1/2): 287-290. |
| [19] | ABE K, NAGASAKA Y, KIDA T, et al. Characterization of polycrystalline SiC films grown by HW-CVD using silicon tetrafluoride[J]. Thin Solid Films, 2008, 516(5): 637-640. |
| [20] | SWAIN B P. Influence of process pressure on HW-CVD deposited a-SiC∶H films[J]. Surface and Coatings Technology, 2006, 201(3/4): 1132-1137. |
| [21] | ZHUANG H, ZHANG L, STAEDLER T, et al. Low temperature hetero-epitaxial growth of 3C-SiC films on Si utilizing microwave plasma CVD[J]. Chemical Vapor Deposition, 2013, 19(1/2/3): 29-37. |
| [22] | WANG C, HUANG N, ZHUANG H, et al. Growth of large-scale heteroepitaxial 3C-SiC films and nanosheets on silicon substrates by microwave plasma enhanced CVD at higher powers[J]. Surface and Coatings Technology, 2016, 299: 96-103. |
| [23] | ZHANG S, JIN M Q, ZHANG C, et al. Centimeter-scale free-standing flexible 3C-SiC films by laser chemical vapor deposition[J]. Surfaces and Interfaces, 2024, 55: 105303. |
| [24] | ZHANG S, XU Q F, TU R, et al. Growth mechanism and defects of-oriented β-SiC films deposited by laser chemical vapor deposition[J]. Journal of the American Ceramic Society, 2015, 98(1): 236-241. |
| [25] | ZHU P P, YANG M J, XU Q F, et al. Epitaxial growth of 3C-SiC on Si(111) and (001) by laser CVD[J]. Journal of the American Ceramic Society, 2018, 101(9): 3850-3856. |
| [26] | LAI Y F, CHENG H, JIA Z L, et al. Fine-grained 3C-SiC thick films prepared via hybrid laser chemical vapor deposition[J]. Journal of the American Ceramic Society, 2019, 102(9): 5668-5678. |
| [27] | ZIELINSKI M, NDIAYE S, CHASSAGNE T, et al. Strain and wafer curvature of 3C-SiC films on silicon: influence of the growth conditions[J]. Physica Status Solidi (a), 2007, 204(4): 981-986. |
| [28] | CIMALLA V, PEZOLDT J, AMBACHER O. Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications[J]. Journal of Physics D: Applied Physics, 2007, 40(20): S19. |
| [29] | NISHINO S, POWELL J A, WILL H A. Production of large-area single-crystal wafers of cubic SiC for semiconductor devices[J]. Applied Physics Letters, 1983, 42(5): 460-462. |
| [30] | HURTÓS E, RODRı́GUEZ-VIEJO J, BASSAS J, et al. Low temperature SiC growth by metalorganic LPCVD on MBE carbonized Si (001) substrates[J]. Materials Science and Engineering: B, 1999, 61: 549-552. |
| [31] | WANG L, DIMITRIJEV S, HAN J S, et al. Growth of 3C-SiC on 150-mm Si(100) substrates by alternating supply epitaxy at 1000 ℃[J]. Thin Solid Films, 2011, 519(19): 6443-6446. |
| [32] | ANZALONE R, ALBERTI A, VIA F L. Evaluation of 3C-SiC/Si residual stress and curvatures along different wafer direction[J]. Materials Letters, 2014, 118: 130-133. |
| [33] | ZIMBONE M, ZIELINSKI M, BARBAGIOVANNI E G, et al. 3C-SiC grown on Si by using a Si1- x Ge x buffer layer[J]. Journal of Crystal Growth, 2019, 519: 1-6. |
| [34] | ZGHEIB C, LUBOV M N, KULIKOV D V, et al. Chemoheteroepitaxy of 3C-SiC(111) on Si(111): influence of predeposited Ge on structure and composition[J]. Physica Status Solidi (a), 2021, 218(24): 2100399. |
| [35] | PORTAIL M, FRAYSSINET E, MICHON A, et al. CVD elaboration of 3C-SiC on AlN/Si heterostructures: structural trends and evolution during growth[J]. Crystals, 2022, 12(11): 1605. |
| [36] | ANZALONE R, ZIMBONE M, CALABRETTA C, et al. Temperature investigation on 3C-SiC homo-epitaxy on four-inch wafers[J]. Materials, 2019, 12(20): 3293. |
| [37] | CALABRETTA C, SCUDERI V, BONGIORNO C, et al. Advanced approach of bulk (111) 3C-SiC epitaxial growth[J]. Microelectronic Engineering, 2024, 283: 112116. |
| [38] | MOLL P, PFUSTERSCHMIED G, SCHWARZ S, et al. Impact of alternating precursor supply and gas flow on the LPCVD growth behavior of polycrystalline 3C-SiC thin films on Si[J]. Sensors and Actuators A: Physical, 2024, 372: 115376. |
| [39] | SEVERINO A, D’ARRIGO G, BONGIORNO C, et al. Thin crystalline 3C-SiC layer growth through carbonization of differently oriented Si substrates[J]. Journal of Applied Physics, 2007, 102(2): 023518. |
| [40] | NISHIGUCHI T, NAKAMURA M, NISHIO K, et al. Heteroepitaxial growth of (111) 3C-SiC on well-lattice-matched (110) Si substrates by chemical vapor deposition[J]. Applied Physics Letters, 2004, 84(16): 3082-3084. |
| [41] | SEVERINO A, BONGIORNO C, PILUSO N, et al. High-quality 6 inch (111) 3C-SiC films grown on off-axis (111) Si substrates[J]. Thin Solid Films, 2010, 518(6): S165-S169. |
| [42] | NAGASAWA H, YAGI K, KAWAHARA T, et al. Reducing planar defects in 3C-SiC[J]. Chemical Vapor Deposition, 2006, 12(8/9): 502-508. |
| [43] | NAGASAWA H, YAGI K, KAWAHARA T, et al. Hetero- and homo-epitaxial growth of 3C-SiC for MOS-FETs[J]. Microelectronic Engineering, 2006, 83(1): 185-188. |
| [44] | MÖLLER H, KRÖTZ G, EICKHOFF M, et al. Suppression of Si cavities at the SiC/Si interface during epitaxial growth of 3C-SiC on silicon-on-insulator[J]. Journal of the Electrochemical Society, 2001, 148(1): G16. |
| [45] | NAMAVAR F, COLTER P C, PLANES N, et al. Investigation of porous silicon as a new compliant substrate for 3C-SiC deposition[J]. Materials Science and Engineering: B, 1999, 61: 571-575. |
| [46] | ZIMBONE M, ZIELINSKI M, BONGIORNO C, et al. 3C-SiC growth on inverted silicon pyramids patterned substrate[J]. Materials, 2019, 12(20): 3407. |
| [47] | LA VIA F, D’ARRIGO G, SEVERINO A, et al. Patterned substrate with inverted silicon pyramids for 3C-SiC epitaxial growth: a comparison with conventional (001) Si substrate[J]. Journal of Materials Research, 2013, 28(1): 94-103. |
| [48] | VON KÄNEL H, MIGLIO L, CRIPPA D, et al. Defect reduction in epitaxial 3C-SiC on Si(001) and Si(111) by deep substrate patterning[J]. Materials Science Forum, 2015, 821/822/823: 193-196. |
| [49] | KREILIGER T, MAUCERI M, PUGLISI M, et al. 3C-SiC epitaxy on deeply patterned Si(111) substrates[J]. Materials Science Forum, 2016, 858: 151-154. |
| [50] | COLSTON G, TURNER K, RENZ A, et al. Three-dimensional epitaxy of low-defect 3C-SiC on a geometrically modified silicon substrate[J]. Materials, 2024, 17(7): 1587. |
| [51] | MARZEGALLI A, CORTINOVIS A, BASSO BASSET F, et al. Exceptional thermal strain reduction by a tilting pillar architecture: suspended Ge layers on Si (001)[J]. Materials & Design, 2017, 116: 144-151. |
| [52] | ALBANI M, MARZEGALLI A, BERGAMASCHINI R, et al. Solving the critical thermal bowing in 3C-SiC/Si(111) by a tilting Si pillar architecture[J]. Journal of Applied Physics, 2018, 123(18): 185703. |
| [53] | MASULLO M, BERGAMASCHINI R, ALBANI M, et al. Growth and coalescence of 3C-SiC on Si(111) micro-pillars by a phase-field approach[J]. Materials, 2019, 12(19): 3223. |
| [54] | LIN T T, HON M H. The growth characteristics of chemical vapour-deposited β-SiC on a graphite substrate by the SiCl4/C3H8/H2 system[J]. Journal of Materials Science, 1995, 30(10): 2675-2681. |
| [55] | HUANG J J, MILITZER C, WIJAYAWARDHANA C, et al. Controlled CVD growth of highly 111-oriented 3C-SiC[J]. The Journal of Physical Chemistry C, 2022, 126(23): 9918-9925. |
| [56] | HUANG J J, MILITZER C, WIJAYAWARDHANA C A, et al. Superconformal silicon carbide coatings via precursor pulsed chemical vapor deposition[J]. Journal of Vacuum Science & Technology A, 2023, 41(3): 030403. |
| [57] | CHIEN F R, NUTT S R, YOO W S. Lattice mismatch measurement of epitaxial β-SiC on α-SiC substrates[J]. Journal of Applied Physics, 1995, 77(7): 3138-3145. |
| [58] | NEUDECK P G, TRUNEK A J, SPRY D J, et al. CVD growth of 3C-SiC on 4H/6H mesas[J]. Chemical Vapor Deposition, 2006, 12(8/9): 531-540. |
| [59] | LEBEDEV A A. Heterojunctions and superlattices based on silicon carbide[J]. Semiconductor Science and Technology, 2006, 21(6): R17-R34. |
| [60] | CHAUDHURI J, IGNATIEV K, EDGAR J H, et al. Low temperature chemical vapor deposition of 3C-SiC on 6H-SiC: high resolution X-ray diffractometry and synchrotron X-ray topography study[J]. Materials Science and Engineering: B, 2000, 76(3): 217-224. |
| [61] | XIE Z Y, EDGAR J H, BURKLAND B K, et al. DPBs-free and polytype controlled growth of SiC via surface etching on on-axis 6H-SiC(0001)[J]. Journal of Crystal Growth, 2001, 224(3/4): 235-243. |
| [62] | VASILIAUSKAS R, JUILLAGUET S, SYVÄJÄRVI M, et al. Cubic SiC formation on the C-face of 6H-SiC (0001) substrates[J]. Journal of Crystal Growth, 2012, 348(1): 91-96. |
| [63] | MUENCH W V, PFAFFENEDER I. Epitaxial deposition of silicon carbide from silicon tetrachloride and hexane[J]. Thin Solid Films, 1976, 31(1/2): 39-51. |
| [64] | NISHINO S, MATSUNAMI H, TANAKA T. Growth and morphology of 6H-SiC epitaxial layers by CVD[J]. Journal of Crystal Growth, 1978, 45: 144-149. |
| [65] | RAI-CHOUDHURY P, FORMIGONI N P. β-silicon carbide films[J]. Journal of the Electrochemical Society, 1969, 116(10): 1440. |
| [66] | KONG H S, GLASS J T, DAVIS R F. Growth rate, surface morphology, and defect microstructures of β-SiC films chemically vapor deposited on 6H-SiC substrates[J]. Journal of Materials Research, 1989, 4(1): 204-214. |
| [67] | LEONE S, BEYER F C, HENRY A, et al. Chloride-based SiC epitaxial growth toward low temperature bulk growth[J]. Crystal Growth & Design, 2010, 10(8): 3743-3751. |
| [68] | LI X, JACOBSON H, BOULLE A, et al. Double-position-boundaries free 3C-SiC epitaxial layers grown on on-axis 4H-SiC[J]. ECS Journal of Solid State Science and Technology, 2014, 3(4): P75-P81. |
| [69] | KAWANISHI S, WATANABE R, SHIBATA H. Nucleation control of 3C-SiC induced by the spiral structure of 6H-SiC[J]. Crystal Growth & Design, 2020, 20(7): 4740-4748. |
| [70] | GUO N, PEI Y C, YUAN W L, et al. Layered epitaxial growth of 3C/4H silicon carbide confined by surface micro-nano steps[J]. Crystals, 2023, 13(7): 1123. |
| [71] | LI X, WANG G H. CVD growth of 3C-SiC layers on 4H-SiC substrates with improved morphology[J]. Solid State Communications, 2023, 371: 115289. |
| [72] | JIAO J Y, ZHAO S Q, LI Y K, et al. Ultrahigh growth rate-induced thick 3C-SiC heteroepitaxial layers on 4H-SiC and its oxidation characteristics[J]. Vacuum, 2024, 229: 113588. |
| [73] | WANG G B, SHENG D, YANG Y F, et al. High-quality and wafer-scale cubic silicon carbide single crystals[J]. Energy & Environmental Materials, 2024, 7(4): e12678. |
| [74] | FU W L, QIAN G Y, WANG Z, et al. Enhancing growth speed of 3C-SiC using solution growth method by a new low temperature Mn-based cosolvent[J]. Ceramics International, 2024, 50(12): 21848-21858. |
| [75] | DENG H, LEI M P, MA W H, et al. Rapid growth of high-purity 3C-SiC crystals using a SiC-saturated Si-Pr-C solution[J]. Crystal Growth & Design, 2024, 24(3): 1180-1187. |
| [76] | HAN C, LEI M P, WANG Z X, et al. A promising Si-Cr-Nd-C solution system designed for rapid growth of 3C-SiC at a low temperature of 1 873 K[J]. CrystEngComm, 2025, 27(15): 2382-2391. |
| [77] | SHENG D, et al. Modeling and suppressing interfacial instability in growth of SiC from high-temperature solutions[J]. Crystal Growth & Design, 2025, 25(4): 1211-1216. |
| [78] | VIA F L, SEVERINO A, ANZALONE R, et al. From thin film to bulk 3C-SiC growth: understanding the mechanism of defects reduction[J]. Materials Science in Semiconductor Processing, 2018, 78: 57-68. |
| [79] | VASILIAUSKAS R, MARINOVA M, SYVÄJÄRVI M, et al. Polytype transformation and structural characteristics of 3C-SiC on 6H-SiC substrates[J]. Journal of Crystal Growth, 2014, 395: 109-115. |
| [80] | JOKUBAVICIUS V, YAZDI G R, LILJEDAHL R, et al. Lateral enlargement growth mechanism of 3C-SiC on off-oriented 4H-SiC substrates[J]. Crystal Growth & Design, 2014, 14(12): 6514-6520. |
| [81] | JOKUBAVICIUS V, YAZDI G R, LILJEDAHL R, et al. Single domain 3C-SiC growth on off-oriented 4H-SiC substrates[J]. Crystal Growth & Design, 2015, 15(6): 2940-2947. |
| [82] | SHI Y C, JOKUBAVICIUS V, HÖJER P, et al. A comparative study of high-quality C-face and Si-face 3C-SiC(111) grown on off-oriented 4H-SiC substrates[J]. Journal of Physics D: Applied Physics, 2019, 52(34): 345103. |
| [83] | SCHUH P, LA VIA F, MAUCERI M, et al. Growth of large-area, stress-free, and bulk-like 3C-SiC (100) using 3C-SiC-on-Si in vapor phase growth[J]. Materials, 2019, 12(13): 2179. |
| [84] | SCHÖLER M, LA VIA F, MAUCERI M, et al. Overgrowth of protrusion defects during sublimation growth of cubic silicon carbide using free-standing cubic silicon carbide substrates[J]. Crystal Growth & Design, 2021, 21(7): 4046-4054. |
| [85] | KOLLMUß M, MAUCERI M, RODER M, et al. In situ bow reduction during sublimation growth of cubic silicon carbide[J]. Reviews on Advanced Materials Science, 2022, 61(1): 829-837. |
| [86] | KOLLMUSS M, SCHÖLER M, ANZALONE R, et al. Large area growth of cubic silicon carbide using close space PVT by application of homoepitaxial seeding[J]. Materials Science Forum, 2022, 1062: 74-78. |
| [87] | KOLLMUSS M, LA VIA F, WELLMANN P J. Effect of growth conditions on the surface morphology and defect density of CS-PVT-grown 3C-SiC[J]. Crystal Research and Technology, 2023, 58(7): 2300034. |
| [88] | HENS P, JOKUBAVICIUS V, LILJEDAHL R, et al. Sublimation growth of thick freestanding 3C-SiC using CVD-templates on silicon as seeds[J]. Materials Letters, 2012, 67(1): 300-302. |
| [89] | ZHANG Y, JIANG S T, LI Y, et al. The influence of point defects on the electronic structures and optical properties of 3C-SiC[J]. AIP Advances, 2024, 14(5): 055009. |
| [90] | SCHÖLER M, LEDERER M W, SCHUH P, et al. Intentional incorporation and tailoring of point defects during sublimation growth of cubic silicon carbide by variation of process parameters[J]. Physica Status Solidi (b), 2020, 257(1): 1900286. |
| [91] | LU X F, YANG P F, LUO J H, et al. Density functional theory capture of electronic structures and optical properties of vacancy doped 3C-SiC systems[J]. Materials Research Express, 2019, 6(11): 115905. |
| [92] | VIA F L, CAMARDA M, MAGNA A L. Mechanisms of growth and defect properties of epitaxial SiC[J]. Applied Physics Reviews, 2014, 1(3): 031301. |
| [93] | ZIMBONE M, SARIKOV A, BONGIORNO C, et al. Extended defects in 3C-SiC: stacking faults, threading partial dislocations, and inverted domain boundaries[J]. Acta Materialia, 2021, 213: 116915. |
| [94] | SCALISE E, BARBISAN L, SARIKOV A, et al. The origin and nature of killer defects in 3C-SiC for power electronic applications by a multiscale atomistic approach[J]. Journal of Materials Chemistry C, 2020, 8(25): 8380-8392. |
| [95] | YAMASAKI J, INAMOTO S, NOMURA Y, et al. Atomic structure analysis of stacking faults and misfit dislocations at 3C-SiC/Si(0 0 1) interfaces by aberration-corrected transmission electron microscopy[J]. Journal of Physics D: Applied Physics, 2012, 45(49): 494002. |
| [96] | PIROUZ P, CHOREY C M, CHENG& T T, et al. Lattice defects in β-SiC grown epitaxially on silicon substrates[J]. MRS Online Proceedings Library, 1987, 91(1): 399-404. |
| [97] | ZIMBONE M, BARBAGIOVANNI E G, BONGIORNO C, et al. Generation and termination of stacking faults by inverted domain boundaries in 3C-SiC[J]. Crystal Growth & Design, 2020, 20(5): 3104-3111. |
| [98] | FISICARO G, BONGIORNO C, DERETZIS I, et al. Genesis and evolution of extended defects: the role of evolving interface instabilities in cubic SiC[J]. Applied Physics Reviews, 2020, 7(2): 021402. |
| [99] | NAGASAWA H, GURUNATHAN R, SUEMITSU M. Controlling planar defects in 3C-SiC: ways to wake it up as a practical semiconductor[J]. Materials Science Forum, 2015, 821/822/823: 108-114. |
| [100] | SARIKOV A, MARZEGALLI A, BARBISAN L, et al. Mechanism of stacking fault annihilation in 3C-SiC epitaxially grown on Si(001) by molecular dynamics simulations[J]. CrystEngComm, 2021, 23(7): 1566-1571. |
| [101] | BARBISAN L, SARIKOV A, MARZEGALLI A, et al. Nature and shape of stacking faults in 3C-SiC by molecular dynamics simulations[J]. Physica Status Solidi (b), 2021, 258(6): 2000598. |
| [102] | WANG R S, ZHANG L M, JIANG W L, et al. Ab initio study of helium behavior near stacking faults in 3C-SiC[J]. Journal of Physics D: Applied Physics, 2024, 57(42): 425302. |
| [103] | ISHIDA Y, TAKAHASHI T, OKUMURA H, et al. The APD annihilation mechanism of 3C-SiC hetero-epilayer on Si(001) substrate[J]. Materials Science Forum, 2000, 338/339/340/341/342: 253-256. |
| [104] | LAMBRECHT W R, SEGALL B. Electronic-structure study of the (110) inversion domain boundary in SiC[J]. Physical Review B, 1990, 41(5): 2948-2958. |
| [105] | SCALISE E, ZIMBONE M, MARZEGALLI A. Impact of inversion domain boundaries on the electronic properties of 3C-SiC[J]. Physica Status Solidi (b), 2022, 259(9): 2200093. |
| [106] | ZIMBONE M, MAUCERI M, LITRICO G, et al. Protrusions reduction in 3C-SiC thin film on Si[J]. Journal of Crystal Growth, 2018, 498: 248-257. |
| [107] | ZIELINSKI M, MICHAUD J F, JIAO S, et al. Experimental observation and analytical model of the stress gradient inversion in 3C-SiC layers on silicon[J]. Journal of Applied Physics, 2012, 111(5): 053507. |
| [108] | IACOPI F, WALKER G, WANG L, et al. Orientation-dependent stress relaxation in hetero-epitaxial 3C-SiC films[J]. Applied Physics Letters, 2013, 102(1): 011908. |
| [109] | ANZALONE R, D’ARRIGO G, CAMARDA M, et al. Advanced residual stress analysis and FEM simulation on heteroepitaxial 3C-SiC for MEMS application[J]. Journal of Microelectromechanical Systems, 2011, 20(3): 745-752. |
| [110] | LA VIA F, MAUCERI M, SCUDERI V, et al. 3C-SiC bulk growth: effect of growth rate and doping on defects and stress[J]. Materials Science Forum, 2020, 1004: 120-125. |
| [111] | SCHÖLER M, BRECHT C, WELLMANN P J. Annealing-induced changes in the nature of point defects in sublimation-grown cubic silicon carbide[J]. Materials, 2019, 12(15): 2487. |
| [112] | LACHICHI A, MAWBY P. Modeling of bipolar degradations in 4H-SiC power MOSFET devices by a 3C-SiC inclusive layer consideration in the drift region[J]. IEEE Transactions on Power Electronics, 2021, 37(3): 2959-2969. |
| [113] | NELSON W E, HALDEN F A, ROSENGREEN A. Growth and properties of β‐SiC single crystals[J]. Journal of Applied Physics, 1966, 37(1): 333-336. |
| [114] | FURUKAWA K, UEMOTO A, SHIGETA M, et al. 3C‐SiC p‐n junction diodes[J]. Applied Physics Letters, 1986, 48(22): 1536-1537. |
| [115] | DING J Y, WEI W S. An UMOSFET integrated with graded semi-super-junction and 3C/4H-SiC hetero-crystalline freewheeling junction[J]. Microelectronics Journal, 2023, 142: 105992. |
| [116] | NINH DGIA, HOANG M T, WANG T, et al. Giant photoelectric energy conversion via a 3C-SiC nano-thin film double heterojunction[J]. Chemical Engineering Journal, 2024, 496: 153774. |
| [117] | NAGASAWA H, ABE M, YAGI K, et al. Fabrication of high performance 3C-SiC vertical MOSFETs by reducing planar defects[J]. Physica Status Solidi (b), 2008, 245(7): 1272-1280. |
| [118] | ABE M, NAGASAWA H, ERICSSON P, et al. High current capability of 3C-SiC vertical DMOSFETs[J]. Microelectronic Engineering, 2006, 83(1): 24-26. |
| [119] | UCHIDA H, MINAMI A, SAKATA T, et al. High temperature performance of 3C-SiC MOSFETs with high channel mobility[J]. Materials Science Forum, 2012, 717/718/719/720: 1109-1112. |
| [120] | LELIS A J, GREEN R, HABERSAT D B. High-temperature reliability of SiC power MOSFETs[J]. Materials Science Forum, 2011, 679/680: 599-602. |
| [121] | SHIBAHARA K, SAITO T, NISHINO S, et al. Fabrication of inversion-type n-channel MOSFET’s using cubic-SiC on Si[J]. IEEE Electron Device Letters, 1986, 7(12): 692-693. |
| [122] | BAH M, ALQUIER D, LESECQ M, et al. Highlighting the role of 3C-SiC in the performance optimization of (Al, Ga)N-based High-Electron mobility transistors[J]. Materials Science in Semiconductor Processing, 2024, 171: 107977. |
| [123] | WAN J W, CAPANO M A, MELLOCH M R, et al. N-channel 3C-SiC MOSFETs on silicon substrate[J]. IEEE Electron Device Letters, 2002, 23(8): 482-484. |
| [124] | LEE K K, ISHIDA Y, OHSHIMA T, et al. N-channel MOSFETs fabricated on homoepitaxy-grown 3C-SiC films[J]. IEEE Electron Device Letters, 2003, 24(7): 466-468. |
| [125] | LI F, SHARMA Y, WALKER D, et al. 3C-SiC transistor with ohmic contacts defined at room temperature[J]. IEEE Electron Device Letters, 2016, 37(9): 1189-1192. |
| [126] | SCHÖNER A, KRIEGER M, PENSL G, et al. Fabrication and characterization of 3C-SiC-based MOSFETs[J]. Chemical Vapor Deposition, 2006, 12(8/9): 523-530. |
| [127] | QU Y J, JOKUBAVICIUS V, HOANG D Q, et al. Aging Ni(OH)2 on 3C-SiC photoanodes to achieve a high photovoltage of 1.1 V and enhanced stability for solar water splitting in strongly alkaline solutions[J]. ACS Applied Materials & Interfaces, 2024, 16(38): 50926-50936. |
| [128] | KIM K S, CHUNG G S. Novel optical hydrogen sensors based on 3C-SiC membrane and photovoltaic detector[J]. Sensors and Actuators B: Chemical, 2014, 193: 42-45. |
| [129] | TRAN T L, NGUYEN D V, NGUYEN H, et al. Deep learning-assisted sensitive 3C-SiC sensor for long-term monitoring of physical respiration[J]. Advanced Sensor Research, 2024, 3(8): 2300159. |
| [130] | VAN ZEGHBROECK B J, FARDI H. Comparison of 3C-SiC and 4H-SiC power MOSFETs[J]. Materials Science Forum, 2018, 924: 774-777. |
| [1] | 胡愈硕, 杨国健, 曹光宇, 刘赐恩, 张星, 龙浩, 徐翔宇, 张洪良. 高迁移率的硼掺杂单晶金刚石微波等离子体化学气相沉积生长及电学性质研究[J]. 人工晶体学报, 2025, 54(9): 1566-1573. |
| [2] | 鹿润林, 郑丽丽, 张辉, 王人松, 胡动力. 热壁CVD制备工艺对8英寸SiC外延层厚度均匀性的影响[J]. 人工晶体学报, 2025, 54(9): 1509-1524. |
| [3] | 翟啸波, 张探涛, 黄雪丽, 曾渝, 解忧. 纳米管中旋错缺陷相互作用的理论研究[J]. 人工晶体学报, 2025, 54(9): 1593-1599. |
| [4] | 王斌, 王晓莉, 侯越云, 刘娇, 刘珊. 紫外氟化钙晶体的生长技术[J]. 人工晶体学报, 2025, 54(8): 1369-1378. |
| [5] | 徐庄婕, 巴延双, 习鹤, 白福慧, 陈大正, 朱卫东, 张春福. 高质量钙钛矿单晶生长及其X射线探测性能表征[J]. 人工晶体学报, 2025, 54(7): 1229-1237. |
| [6] | 李宁, 张欣雷, 肖宝, 张滨滨. 辐射探测器用CsPbBr3晶体的缺陷研究进展[J]. 人工晶体学报, 2025, 54(7): 1146-1159. |
| [7] | 单衍苏, 李兴牧, 王霞, 吴德华, 曹丙强. 全无机卤化物钙钛矿薄膜外延生长研究进展[J]. 人工晶体学报, 2025, 54(7): 1208-1220. |
| [8] | 程嘉甜, 范鑫雨, 杨周. 快速球磨法制备钙钛矿颗粒的光电性质和X射线探测性能研究[J]. 人工晶体学报, 2025, 54(7): 1297-1303. |
| [9] | 刘劲松, 沈露, 任龙军, 黄希忠. 通过缺陷和应变工程控制Janus MoSSe的析氢反应[J]. 人工晶体学报, 2025, 54(6): 1034-1041. |
| [10] | 吴啸, 赵文, 起文斌, 宋林伟, 李向堃, 姜军, 孔金丞, 王善力. 碲锌镉晶体热退火技术的研究进展[J]. 人工晶体学报, 2025, 54(6): 912-923. |
| [11] | 赵昊, 余博文, 李琪, 李光清, 刘医源, 林娜, 李阳, 穆文祥, 贾志泰. Mist-CVD法生长LiGa5O8单晶薄膜及其导电机理研究[J]. 人工晶体学报, 2025, 54(6): 997-1004. |
| [12] | 喻超, 张博, 王琦琦, 王希, 胡于南, 梁小燕, 张继军, 闵嘉华, 王林军. 移动加热器法生长的CZT晶体内部点缺陷精细调控研究[J]. 人工晶体学报, 2025, 54(6): 960-969. |
| [13] | 王子豪, 刘嘉钰, 董子豪, 王宇鑫, 许雅旭, 朱禹. 缺陷氨氟复合功能化UiO-66的制备及其青蒿琥酯吸附性能的研究[J]. 人工晶体学报, 2025, 54(5): 890-897. |
| [14] | 杜青波, 杨亚鹏, 高旭东, 张智, 赵晓宇, 王惠琦, 刘轶尔, 李国强. 宽禁带半导体碳化硅基核辐射探测器研究进展[J]. 人工晶体学报, 2025, 54(5): 737-756. |
| [15] | 王智超, 叶林峰, 阮妙, 杨超, 加雪峰, 倪玉凤, 郭永刚, 高鹏. 钙钛矿太阳电池中的脒基小分子界面修饰策略[J]. 人工晶体学报, 2025, 54(5): 873-881. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS