Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (8): 1417-1425.DOI: 10.16553/j.cnki.issn1000-985x.2025.0030
• Research Articles • Previous Articles Next Articles
LIANG Lifeng1,2(
), YU Xinxin1, LI Zhonghui1, LIU Jinlong2, LI Chengming2, WANG Xinhua3, WEI Junjun2(
)
Received:2025-02-19
Online:2025-08-20
Published:2025-09-01
CLC Number:
LIANG Lifeng, YU Xinxin, LI Zhonghui, LIU Jinlong, LI Chengming, WANG Xinhua, WEI Junjun. Effect of AlN Dielectric Layer on Growth of Diamond Passivation Film on GaN Surface[J]. Journal of Synthetic Crystals, 2025, 54(8): 1417-1425.
Fig.2 Comparison of Zeta potentials of Un-NDs, O-NDs, AlN and FTIR test results before and after air annealing of NDs. (a) Zeta potential test results of Un-NDs, O-NDs and AlN; (b) FTIR of NDs before and after air annealing
Fig.4 Multi-dimensional characterization of surface morphology and composition structure of diamond passivation layer (including comparison with AlN surface morphology before deposition). (a) SEM image of the surface morphology of the diamond passivation layer; (b) AFM image of diamond passivation layer surface; (c) SEM image of AlN surface morphology before diamond deposition; (d) Raman spectroscopy of diamond passivation layer
Fig.5 TDTR characterization and layer thickness dependent sensitivity analysis of thermal conductivity at Diamond/GaN interface. (a) TDTR test data fitting curve; (b) sensitivity of Diamond/GaN ITC and layer thickness
| Layer | Thickness | TC/(W·m-1·K-1) | TBReff/(m2·K·GW-1) |
|---|---|---|---|
| Aluminum | 100 nm | 237 | — |
| Al/Diamond | — | — | 21.17 |
| NCD | 120 nm | 123.85 | — |
| Diamond/GaN | — | — | 9.78±0.27 |
| GaN | 2 μm | 205 | — |
| SiC | 500 μm | 400 | — |
Table 1 TDTR test results
| Layer | Thickness | TC/(W·m-1·K-1) | TBReff/(m2·K·GW-1) |
|---|---|---|---|
| Aluminum | 100 nm | 237 | — |
| Al/Diamond | — | — | 21.17 |
| NCD | 120 nm | 123.85 | — |
| Diamond/GaN | — | — | 9.78±0.27 |
| GaN | 2 μm | 205 | — |
| SiC | 500 μm | 400 | — |
Fig.7 Characterization of interface microstructure and element distribution of Diamond/AlN/GaN composite structure based on TEM and EDS. (a) TEM image of NCD membrane fracture; (b) TEM image at the Diamond/AlN/GaN interface; (c) EDS at Diamond/AlN/GaN interface
| [1] | CAO L N, WANG J S, HARDEN G, et al. Experimental characterization of impact ionization coefficients for electrons and holes in GaN grown on bulk GaN substrates[J]. Applied Physics Letters, 2018, 112(26): 262103. |
| [2] | PENGELLY R S, WOOD S M, MILLIGAN J W, et al. A review of GaN on SiC high electron-mobility power transistors and MMICs[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(6): 1764-1783. |
| [3] | BAR-COHEN A, MAURER J J, ALTMAN D H. Embedded cooling for wide bandgap power amplifiers: a review[J]. Journal of Electronic Packaging, 2019, 141(4): 040803. |
| [4] | POMEROY J W, UREN M J, LAMBERT B, et al. Operating channel temperature in GaN HEMTs: DC versus RF accelerated life testing[J]. Microelectronics Reliability, 2015, 55(12): 2505-2510. |
| [5] | CHU K K, CHAO P C, DIAZ J A, et al. S2-T4: low-temperature substrate bonding technology for high power GaN-on-diamond HEMTs[C]// 2014 Lester Eastman Conference on High Performance Devices (LEC). August 5-7, 2014, Ithaca, NY, USA. IEEE, 2014: 1-4. |
| [6] | JESSEN G H, GILLESPIE J K, VIA G D, et al. AlGaN/GaN HEMT on diamond technology demonstration[C]// 2006 IEEE Compound Semiconductor Integrated Circuit Symposium. November 12-15, 2006, San Antonio, TX, USA. IEEE, 2006: 271-274. |
| [7] | HIRAMA K, KASU M, TANIYASU Y. RF high-power operation of AlGaN/GaN HEMTs epitaxially grown on diamond[J]. IEEE Electron Device Letters, 2012, 33(4): 513-515. |
| [8] | ARIVAZHAGAN L, JARNDAL A, NIRMAL D. GaN HEMT on Si substrate with diamond heat spreader for high power applications[J]. Journal of Computational Electronics, 2021, 20(2): 873-882. |
| [9] | ZHANG H, GUO Z X, LU Y F. Enhancement of hot spot cooling by capped diamond layer deposition for multifinger AlGaN/GaN HEMTs[J]. IEEE Transactions on Electron Devices, 2020, 67(1): 47-52. |
| [10] | SEELMANN E M, MEISEN P, SCHAUDEL F, et al. Heat-spreading diamond films for GaN-based high-power transistor devices[J]. Diamond and Related Materials, 2001, 10(3/4/5/6/7): 744-749. |
| [11] | MIRMIRA S R, FLETCHER L S. Review of the thermal conductivity of thin films[J]. Journal of Thermophysics and Heat Transfer, 1998, 12(2): 121-131. |
| [12] | SLACK G A, TANZILLI R A, POHL R O, et al. The intrinsic thermal conductivity of AlN[J]. Journal of Physics and Chemistry of Solids, 1987, 48(7): 641-647. |
| [13] | YATES L, ANDERSON J, GU X, et al. Low thermal boundary resistance interfaces for GaN-on-diamond devices[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 24302-24309. |
| [14] | JIA X, WEI J J, KONG Y C, et al. The influence of dielectric layer on the thermal boundary resistance of GaN-on-diamond substrate[J]. Surface and Interface Analysis, 2019, 51(7): 783-790. |
| [15] |
ONN D G, WITEK A, QIU Y Z, et al. Some aspects of the thermal conductivity of isotopically enriched diamond single crystals[J]. Physical Review Letters, 1992, 68(18): 2806-2809.
PMID |
| [16] | ZHU R H, MIAO J Y, LIU J L, et al. High temperature thermal conductivity of free-standing diamond films prepared by DC arc plasma jet CVD[J]. Diamond and Related Materials, 2014, 50: 55-59. |
| [17] | CHO J, LI Z J, BOZORG G E, et al. Improved thermal interfaces of GaN-diamond composite substrates for HEMT applications[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3(1): 79-85. |
| [18] |
BOPPART H, VAN-STRAATEN J, SILVERA I F. Raman spectra of diamond at high pressures[J]. Physical Review B, 1985, 32(2): 1423-1425.
PMID |
| [19] | MALAKOUTIAN M, FIELD D E, HINES N J, et al. Record-low thermal boundary resistance between diamond and GaN-on-SiC for enabling radiofrequency device cooling[J]. ACS Applied Materials & Interfaces, 2021, 13(50): 60553-60560. |
| [20] | MALAKOUTIAN M, LAURENT M A, CHOWDHURY S. A study on the growth window of polycrystalline diamond on Si3N4-coated n-polar GaN[J]. Crystals, 2019, 9(10): 498-498. |
| [21] | FERRARI A C, ROBERTSON J. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362(1824): 2477-2512. |
| [22] | ZENG L Y, PENG H Y, WANG W B, et al. Nanocrystalline diamond films deposited by the hot cathode direct current plasma chemical vapor deposition method with different compositions of CH4/Ar/H2 gas mixture[J]. The Journal of Physical Chemistry C, 2008, 112(5): 1401-1406. |
| [23] | YANG Q, CHEN W, XIAO C, et al. Low temperature synthesis of diamond thin films through graphite etching in a microwave hydrogen plasma[J]. Carbon, 2005, 43(12): 2635-2638. |
| [24] | AJIKUMAR P K, GANESAN K, KUMAR N, et al. Role of microstructure and structural disorder on tribological properties of polycrystalline diamond films[J]. Applied Surface Science, 2019, 469: 10-17. |
| [25] | KOREPANOV V I, HAMAGUCHI H O, OSAWA E, et al. Carbon structure in nanodiamonds elucidated from Raman spectroscopy[J]. Carbon, 2017, 121: 322-329. |
| [26] | YOSHIKAWA M, MORI Y, OBATA H, et al. Raman scattering from nanometer-sized diamond[J]. Applied Physics Letters, 1995, 67(5): 694-696. |
| [27] | YUAN C, HANUS R, GRAHAM S. A review of thermoreflectance techniques for characterizing wide bandgap semiconductors' thermal properties and devices’ temperatures[J]. Journal of Applied Physics, 2022, 132(22): 220701. |
| [28] | SATURDAY L, WILSON L, RETTERER S, et al. Thermal conductivity of nano- and micro-crystalline diamond films studied by photothermal excitation of cantilever structures[J]. Diamond and Related Materials, 2021, 113: 108279. |
| [1] | XIAO Jiexiang, YANG Chaopu, WANG Jianfeng, ZHANG Yumin, YI Juemin, XU Ke. Polarization and Temperature Dependence of Low-Temperature Photoluminescence Spectra in Fe-Doped GaN Crystals [J]. Journal of Synthetic Crystals, 2025, 54(8): 1410-1416. |
| [2] | ZHU Yuge, CHENG Xuyi, GAO Tian. Research Progress on Modulating the Magnetocaloric Effect of Manganate Crystals under High Pressure [J]. Journal of Synthetic Crystals, 2025, 54(8): 1379-1387. |
| [3] | LIU Zhenhua, LIU Shengwei, WANG Yixin, SHAN Hengsheng. Effect of Al0.1Ga0.9N Electron Blocking Layer on Optical Properties of In0.26Ga0.74N/GaN Multiple Quantum Wells [J]. Journal of Synthetic Crystals, 2025, 54(8): 1433-1440. |
| [4] | YANG Fan, ZHANG Siyuan, DONG Wupei, WANG Xizheng, ZHOU Ming, JU Dianxing. Growth and High Resolution X-Ray Imaging of Inch-Size (C24H20P)2MnBr4 Single Crystalline Film [J]. Journal of Synthetic Crystals, 2025, 54(7): 1289-1296. |
| [5] | SHAN Yansu, LI Xingmu, WANG Xia, WU Dehua, CAO Bingqiang. Research Progress on Epitaxial Growth of All-Inorganic Halide Perovskite Thin Films [J]. Journal of Synthetic Crystals, 2025, 54(7): 1208-1220. |
| [6] | HAO Jialong, LI Hongbo, LYU Shunpeng, ZHU Licai, SUN Wenchao, ZHANG Ruojia, LIU Zhongxu, JIANG Ke, BEN Jianwei, ZHANG Shanli, SUN Xiaojuan, LI Dabing. Sidewall Repair Improves Optical Power Density of 237 nm AlGaN-Based Micro-LEDs [J]. Journal of Synthetic Crystals, 2025, 54(6): 970-978. |
| [7] | LI Yazhou, MA Zhanhong, YAO Weizhen, YANG Shaoyan, LIU Xianglin, LI Chengming, WANG Zhanguo. Effect of MOCVD Carrier Gas Flow Rate on GaN Epitaxial Growth [J]. Journal of Synthetic Crystals, 2025, 54(6): 979-985. |
| [8] | ZHOU Min, ZHOU Hong, ZHANG Jincheng, HAO Yue. Research Progress on β-Ga2O3 Radio Frequency Power Devices [J]. Journal of Synthetic Crystals, 2025, 54(5): 721-736. |
| [9] | LI Jia, FENG Jing, MIAO Meng. Crystal Structure and Magnetism of Two Isomorphic Complexes Based on Mixed Ligands [J]. Journal of Synthetic Crystals, 2025, 54(4): 693-699. |
| [10] | XU Tongtao, WAN Hongshan, YANG Tianxing, GAO Min, WANG Chong. Synthesis, Characterization and Properties of Two Coppper(Ⅱ) Complexes Derived from 4-Amino-2,6-Dimethoxypyrimidine [J]. Journal of Synthetic Crystals, 2025, 54(4): 684-692. |
| [11] | QI Zhanguo, WANG Shouzhi, LI Qiubo, WANG Zhongxin, SHAO Huihui, LIU Lei, WANG Guodong, SUN Defu, YU Huidong, JIANG Kaize, ZHANG Shuang, CHEN Xiufang, XU Xiangang, ZHANG Lei. Preparation of 4-Inch High-Quality GaN Single Crystal Substrates [J]. Journal of Synthetic Crystals, 2025, 54(4): 717-720. |
| [12] | HAN Yu, JIAO Teng, YU Han, SAI Qinglin, CHEN Duanyang, LI Zhen, LI Yihan, ZHANG Zhao, DONG Xin. Effect of Substrate Crystal Planes on the Properties of Homoepitaxial n-Ga2O3 Thin Films Grown by MOCVD [J]. Journal of Synthetic Crystals, 2025, 54(3): 438-444. |
| [13] | WANG Junlan, LI Zaoyang, YANG Yao, QI Chongchong, LIU Lijun. Evaluation and Control of Crystallization Interface Deformation in the Growth of 6-Inch β-Ga2O3 Crystals by EFG Method [J]. Journal of Synthetic Crystals, 2025, 54(3): 396-406. |
| [14] | WANG Ziming, ZHANG Yachao, FENG Qian, LIU Shiteng, LIU Yuhong, WANG Yao, WANG Long, ZHANG Jincheng, HAO Yue. ε-Ga2O3 Growth on c-Plane Sapphire Substrate with Metal-Organic Chemical Vapor Deposition [J]. Journal of Synthetic Crystals, 2025, 54(3): 420-425. |
| [15] | XIE Yinfei, HE Yang, LIU Weiye, XU Wenhui, YOU Tiangui, OU Xin, GUO Huaixin, SUN Huarui. Recent Progress on Thermal Management of Ultrawide Bandgap Gallium Oxide Power Devices [J]. Journal of Synthetic Crystals, 2025, 54(2): 290-311. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS