Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (7): 1208-1220.DOI: 10.16553/j.cnki.issn1000-985x.2025.0096
• Reviews • Previous Articles Next Articles
SHAN Yansu1(
), LI Xingmu1, WANG Xia2, WU Dehua3, CAO Bingqiang1(
)
Received:2025-04-26
Online:2025-07-20
Published:2025-07-30
CLC Number:
SHAN Yansu, LI Xingmu, WANG Xia, WU Dehua, CAO Bingqiang. Research Progress on Epitaxial Growth of All-Inorganic Halide Perovskite Thin Films[J]. Journal of Synthetic Crystals, 2025, 54(7): 1208-1220.
Fig. 1 Cubic-phase inorganic halide perovskite structures[33]. (a) ABX3-type cubic single perovskite structure, where A-site cations are surrounded by corner-sharing B2+X6 octahedra; (b) A2B+B3+X6-type double perovskite structure, where A-site cations are surrounded by alternating B+X6 and B3+X6 octahedra
Fig.2 Lattice registration modes in epitaxial growth[37]. (a) Commensurate registry; coincident registry (b) and incommensurate registry (c). Coincident registry and incommensurate registry belong to the “quasiepitaxial” regime due to their higher lattice mismatch
| 生长方法 | 材料 | 衬底 | 器件类型 | 性能 | 外延失配度 | 参考文献 |
|---|---|---|---|---|---|---|
| 反应性气相沉积 | CsSnBr3 | NaCl | — | — | 外延,2.8% | [ |
| 反应性气相沉积 | CsSnBr3 | NaCl∶NaBr=1∶1 | — | — | 外延,0.01% | [ |
| 反应性气相沉积 | CsSnI3 | KCl | — | — | 外延,0.01% | [ |
| 化学气相沉积 | CsSnBr3 | NaCl | — | — | 外延,2.8% | [ |
| 化学气相沉积 | CsPbBr3 | NaCl | — | — | 外延,3.9% | [ |
| 化学气相沉积 | CsPbBr3 | SrTiO3 | — | — | 准外延 | [ |
| 化学气相沉积 | CsPbBr3 | PbS | 可见光探测器 | R: 15 A/W, D: 2.65×1011 Jones, RT: 102/96 ms(450 nm, 5 V) | 外延 | [ |
| 化学气相沉积 | CsPbBr3 | Muscovite | — | — | 准外延 | [ |
| 化学气相沉积 | CsSnBr3 | Au | — | — | 准外延 | [ |
| 分子束外延 | CsPbBr3/CsSnBr3 | Au | — | — | 准外延 | [ |
| 远程外延 | CsPbBr3 | Sapphire | Micro-LED | EQE: 16.7%, brightness:4.0×10⁵ cd·m-2, Pixel size: 4 μm | 外延,0.97% | [ |
| 远程外延 | CsPbBr3 | NaCl | — | — | 外延, 3.9% | [ |
| 远程外延 | CsPbBr3 | CaF2 | — | — | 外延,6.0% | [ |
| 脉冲激光沉积 | CsPbX3 | SrTiO3 | — | — | 准外延 | [ |
| 脉冲激光沉积 | CsPbBr3 | Muscovite | 可见光探测器 | R: 0.16 A/W, D: 2.41×1014 Jones, RT: 44.1/42.8 μs(405 nm, 10 V) | 准外延 | [ |
| 脉冲激光沉积 | CsPbBr3 | Si | 可见光探测器 | R: 780 mA/W, D: 6.78 × 1011 Jones, RT: 4.2/6.5 ms(520 nm, 5 V) | 准外延 | [ |
| 脉冲激光沉积 | Cs2AgBrBr6 | SrTiO3 | 可见光探测器 | R: 12.1 A/W, 4.63×1012 Jones, Response time: 0.1/0.16 ms(530 nm, 5 V) | 准外延 | [ |
| 溶液外延 | CsPbBr3 | SrTiO3 | FET | Hole mobility: 3.9 cm2 V-1·s-1, On/Off: 105 | 准外延 | [ |
| 溶液外延 | Cs2AgBiBr6 | Cs3Bi2Br9 | X射线探测器 | Sensitivity: 1 390 µC·Gyair-1·cm-2, Detection limit: 37.48 nGyair·s-1 | 外延,0.4% | [ |
Table 1 Summary of epitaxial growth of all-inorganic halide perovskites
| 生长方法 | 材料 | 衬底 | 器件类型 | 性能 | 外延失配度 | 参考文献 |
|---|---|---|---|---|---|---|
| 反应性气相沉积 | CsSnBr3 | NaCl | — | — | 外延,2.8% | [ |
| 反应性气相沉积 | CsSnBr3 | NaCl∶NaBr=1∶1 | — | — | 外延,0.01% | [ |
| 反应性气相沉积 | CsSnI3 | KCl | — | — | 外延,0.01% | [ |
| 化学气相沉积 | CsSnBr3 | NaCl | — | — | 外延,2.8% | [ |
| 化学气相沉积 | CsPbBr3 | NaCl | — | — | 外延,3.9% | [ |
| 化学气相沉积 | CsPbBr3 | SrTiO3 | — | — | 准外延 | [ |
| 化学气相沉积 | CsPbBr3 | PbS | 可见光探测器 | R: 15 A/W, D: 2.65×1011 Jones, RT: 102/96 ms(450 nm, 5 V) | 外延 | [ |
| 化学气相沉积 | CsPbBr3 | Muscovite | — | — | 准外延 | [ |
| 化学气相沉积 | CsSnBr3 | Au | — | — | 准外延 | [ |
| 分子束外延 | CsPbBr3/CsSnBr3 | Au | — | — | 准外延 | [ |
| 远程外延 | CsPbBr3 | Sapphire | Micro-LED | EQE: 16.7%, brightness:4.0×10⁵ cd·m-2, Pixel size: 4 μm | 外延,0.97% | [ |
| 远程外延 | CsPbBr3 | NaCl | — | — | 外延, 3.9% | [ |
| 远程外延 | CsPbBr3 | CaF2 | — | — | 外延,6.0% | [ |
| 脉冲激光沉积 | CsPbX3 | SrTiO3 | — | — | 准外延 | [ |
| 脉冲激光沉积 | CsPbBr3 | Muscovite | 可见光探测器 | R: 0.16 A/W, D: 2.41×1014 Jones, RT: 44.1/42.8 μs(405 nm, 10 V) | 准外延 | [ |
| 脉冲激光沉积 | CsPbBr3 | Si | 可见光探测器 | R: 780 mA/W, D: 6.78 × 1011 Jones, RT: 4.2/6.5 ms(520 nm, 5 V) | 准外延 | [ |
| 脉冲激光沉积 | Cs2AgBrBr6 | SrTiO3 | 可见光探测器 | R: 12.1 A/W, 4.63×1012 Jones, Response time: 0.1/0.16 ms(530 nm, 5 V) | 准外延 | [ |
| 溶液外延 | CsPbBr3 | SrTiO3 | FET | Hole mobility: 3.9 cm2 V-1·s-1, On/Off: 105 | 准外延 | [ |
| 溶液外延 | Cs2AgBiBr6 | Cs3Bi2Br9 | X射线探测器 | Sensitivity: 1 390 µC·Gyair-1·cm-2, Detection limit: 37.48 nGyair·s-1 | 外延,0.4% | [ |
Fig.3 Epitaxial thin films of CsSnBr3 and CsSnI3. (a) In situ reflection high-energy electron diffraction characterization of cubic-phase CsSnBr3 perovskite film during epitaxial growth on NaCl substrate; (b) top-view and side-view images of cubic-phase CsSnBr3 on epitaxial thin films[41]; (c) reflection high-energy electron diffraction patterns of the KCl substrate and CsSnI3; (d) pole figure of CsSnI3 epitaxial film[42]; (e) XRD scans of CsSnBr3 and CsPbBr3 epitaxial films, left insets: optical photographs of 1 cm×1 cm epitaxial films. Right inset: rocking curve of the reflection for CsSnBr3 film; (f) SEM images of halide perovskite epitaxial films; (g) photo-dember effect in CsPbBr3 epitaxial thin films, showing the electron-hole concentration distribution along the film thickness direction at different time points after photoexcitation, the inset illustrates the distinct transport trajectories of fast and slow carriers using a damped cosine function
Fig.4 Epitaxial growth of CsPbBr3 thin films on STO substrates[44]. (a) Schematic illustration of lattice matching between CsPbBr3 (100) and STO (100) planes; (b) XRD patterns of epitaxially grown CsPbBr3 film, inset shows a magnified view of the 13°~32° range for the CsPbBr3/STO (100) sample; (c) optical image of CsPbBr3 nanosheets; (d) SEM image of CsPbBr3 epitaxial film
Fig.5 (a) Reciprocal space mapping of the CsPbBr3 thin film and NaCl (224) peak in the CsPbBr3/graphene/NaCl epitaxial heterostructure[50]; (b) top: SEM image and bottom: optical photograph of epitaxial CsPbBr3 films on Graphene /CaF2[50]; (c) schematic illustration of atomic nucleation processes during the initial stages of ionic epitaxy and remote epitaxy[50]; (d) schematic illustration of remote epitaxial growth of perovskites using a sapphire substrate[49]; (e) TEM image of epitaxial CsPbBr3 film[49]; (f) optical images of epitaxial perovskite films (CsPbCl3, CsPbCl1.3Br1.7, CsPbBr3, CsPbBr2.1I0.9, and CsPbBrI2)[49]; (g) schematic diagram of the perovskite micro-LED display; (h) static image from the perovskite micro-LED display; (i) video frame of the perovskite micro-LED display
Fig.6 Fabrication of large-area CsPbBr3 perovskite films via magnetron sputtering [59]. (a) Photograph and (b) schematic diagram of magnetron-sputtered large-area CsPbBr3 films; (c) ultrafast dynamics study and (d) transient absorption spectra at different delay times for intrinsic CsPbBr3 films, demonstrating the absence of defect states; (e) absorption spectra; (f) photoluminescence spectra, and fluorescence lifetime decay profiles of intrinsic films; (g) temperature-dependent resistivity measurements and (h) thermal activation model fitting for CsPbBr3 films, yielding an activation energy of 2.24 eV
Fig.7 (a) XRD patterns of epitaxial films with varying halide ratios[51], (b) reciprocal space mapping of the CsPbIBr2 film along the (001) orientation[51], (c) steady-state photoluminescence spectra of CsPbI2Br films deposited on different substrates[51], (d) energy band diagrams of the p-Si/n-CsPbBr3 epitaxial film heterojunction under 520 nm and 650 nm laser illumination[53], (e) cross-sectional TEM image of the CsPbBr3 film on a Si substrate, and magnified TEM view of the white-boxed region, revealing an interface between Si and CsPbBr3 with a ~2 nm transition layer[53], (f) I-V curves of the p-Si/n-CsPbBr3 epitaxial heterojunction photodetector[53]; (g) photocurrent and external quantum efficiency curve of the p-Si/n-CsPbBr3 photodetector[53]
Fig.8 Double perovskite Cs2AgBiBr6 epitaxial films and photodetectors[54]. (a) Schematic illustration of lattice matching between the Cs2AgBiBr6 (100) and STO (100) planes; (b) reciprocal space mapping of the epitaxial Cs2AgBiBr6 film along the (100) orientation; (c) SEM image of the epitaxial Cs2AgBiBr6 film; (d) schematic of the optoelectronic device based on the Cs2AgBiBr6 epitaxial film; (e) I-V curves of device at varying irradiation power densities
Fig.9 (a) Optical images of the α-FAPbI3 epitaxial film. Scale bar: 4 mm[63],(b) cross-sectional SEM image of the α-FAPbI3 epitaxial film. Scale bar: 2 μm[63], (c) (104) asymmetric reciprocal space mapping of α-FAPbI3 on different substrates[63], (d) I-V characteristics of the Au/α-FAPbI3/ITO photoconductive structure photodetector[63], (e) SEM image of CsPbBr3 on STO (100)[64], (f) SEM image of PbI2 on Au/Si (111)[64], (g) optical image of NaCl on Au/Ag/Si (100)[64]
Fig.10 (a) SEM image and (b) pole figure of epitaxial CsPbBr3 films[55]; (c) FET device structure schematic diagram[55]; (d) scan transfer curves of the FET device[55]; (e) top: optical image of a Cs3Bi2Br9 single-crystal substrate[56]; bottom: optical image of the heterostructure; (f) XRD pole figure of the epitaxial Cs2AgBiBr6 single-crystal film along the (001) orientation, (g) dark current drift of heterostructure and Cs3Bi2Br9 under an electric field of 660 V·mm-1; (h) current density versus dose rate dependence of the heterostructure detector under varying electric fields[56]
| [1] | PACCHIONI G. Highly efficient perovskite LEDs[J]. Nature Reviews Materials, 2021, 6(2): 108. |
| [2] | ASSADI M K, BAKHODA S, SAIDUR R, et al. Recent progress in perovskite solar cells[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 2812-2822. |
| [3] | AHMADI M, WU T, HU B. A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics [J]. Adv Mater, 2017, 29(41): 1605242. |
| [4] | STYLIANAKIS M M, MAKSUDOV T, PANAGIOTOPOULOS A, et al. Inorganic and hybrid perovskite based laser devices: a review [J]. Materials, 2019, 12(6): 859. |
| [5] | ZANATTA A R. The Shockley-Queisser limit and the conversion efficiency of silicon-based solar cells[J]. Results in Optics, 2022, 9: 100320. |
| [6] | TAI Q D, TANG K C, YAN F. Recent progress of inorganic perovskite solar cells[J]. Energy & Environmental Science, 2019, 12(8): 2375-2405. |
| [7] | LIANG J, WANG C, WANG Y, et al. All-inorganic perovskite solar cells [J]. Journal of American Chemical Society, 2016, 138(49): 15829-32. |
| [8] | SHEN C, YE T, YANG P, et al. All-inorganic perovskite solar cells: defect regulation and emerging applications in extreme environments [J]. Adv Mater, 2024, 36(25): 2401498. |
| [9] | SHAO Y C, XIAO Z G, BI C, et al. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells[J]. Nature Communications, 2014, 5: 5784. |
| [10] | UNGER E L, HOKE E T, BAILIE C D, et al. Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells[J]. Energy & Environmental Science, 2014, 7(11): 3690-3698. |
| [11] | CORREA-BAENA J P, SALIBA M, BUONASSISI T, et al. Promises and challenges of perovskite solar cells[J]. Science, 2017, 358(6364): 739-744. |
| [12] | SEO J, NOH J H, SEOK S I. Rational strategies for efficient perovskite solar cells[J]. Accounts of Chemical Research, 2016, 49(3): 562-572. |
| [13] | MILLER L M, COLEMAN J J. Metalorganic chemical vapor deposition[J]. Critical Reviews in Solid State and Materials Sciences, 1988, 15(1): 1-26. |
| [14] | LI X, BI D Q, YI C Y, et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells[J]. Science, 2016, 353(6294): 58-62. |
| [15] | NIE W Y, TSAI H, ASADPOUR R, et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains[J]. Science, 2015, 347(6221): 522-525. |
| [16] | PALMSTRØM C J. Epitaxial heusler alloys: new materials for semiconductor spintronics[J]. MRS Bulletin, 2003, 28(10): 725-728. |
| [17] | PALMSTRØM C J. Epitaxy of dissimilar materials[J]. Annual Review of Materials Science, 1995, 25: 389-415. |
| [18] | RAMESH R, SCHLOM D G. Creating emergent phenomena in oxide superlattices[J]. Nature Reviews Materials, 2019, 4(4): 257-268. |
| [19] | HUANG M, RUOFF R S. Growth of single-layer and multilayer graphene on Cu/Ni alloy substrates[J]. Accounts of Chemical Research, 2020, 53(4): 800-811. |
| [20] | CHENG C W, SHIU K T, LI N, et al. Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics[J]. Nature Communications, 2013, 4: 1577. |
| [21] | DAI P, TAN M, WU Y Y, et al. Solid-state tellurium doping of AlInP and its application to photovoltaic devices grown by molecular beam epitaxy[J]. Journal of Crystal Growth, 2015, 413: 71-75. |
| [22] | GOMYO A, SUZUKI T, KOBAYASHI K, et al. Evidence for the existence of an ordered state in Ga0.5In0.5P grown by metalorganic vapor phase epitaxy and its relation to band‐gap energy[J]. Applied Physics Letters, 1987, 50(11): 673-675. |
| [23] | BERTNESS K A, KURTZ S R, FRIEDMAN D J, et al. 29.5%‐efficient GaInP/GaAs tandem solar cells[J]. Applied Physics Letters, 1994, 65(8): 989-991. |
| [24] | LI W, LAMMASNIEMI J, KAZANTSEV A B, et al. GaInP/AlInP tunnel junction for GaInP/GaAstandem solar cells[J]. Electronics Letters, 1998, 34(4): 406-407. |
| [25] | LEE J, WU J, RYU J H, et al. Stretchable semiconductor technologies with high areal coverages and strain-limiting behavior: demonstration in high-efficiency dual-junction GaInP/GaAs photovoltaics[J]. Small, 2012, 8(12): 1851-1856. |
| [26] | KING R R, LAW D C, EDMONDSON K M, et al. 40% efficient metamorphic GaInP∕GaInAs∕Ge multijunction solar cells[J]. Applied Physics Letters, 2007, 90(18): 183516. |
| [27] | YANG T F, WANG X, ZHENG B Y, et al. Ultrahigh-performance optoelectronics demonstrated in ultrathin perovskite-based vertical semiconductor heterostructures[J]. ACS Nano, 2019, 13(7): 7996-8003. |
| [28] | PARROTT E S, PATEL J B, HAGHIGHIRAD A A, et al. Growth modes and quantum confinement in ultrathin vapour-deposited MAPbI3 films[J]. Nanoscale, 2019, 11(30): 14276-14284. |
| [29] | HILT F, HOVISH M Q, ROLSTON N, et al. Rapid route to efficient, scalable, and robust perovskite photovoltaics in air[J]. Energy & Environmental Science, 2018, 11(8): 2102-2113. |
| [30] | MALI S S, PATIL J V, HONG C K. Hot-air-assisted fully air-processed barium incorporated CsPbI2Br perovskite thin films for highly efficient and stable all-inorganic perovskite solar cells[J]. Nano Letters, 2019, 19(9): 6213-6220. |
| [31] | YE S Y, RAO H X, ZHAO Z R, et al. A breakthrough efficiency of 19.9% obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiourea)I[J]. Journal of the American Chemical Society, 2017, 139(22): 7504-7512. |
| [32] | QIAO H W, YANG S, WANG Y, et al. A gradient heterostructure based on tolerance factor in high-performance perovskite solar cells with 0.84 fill factor[J]. Advanced Materials, 2019, 31(5): e1804217. |
| [33] | BARTEL C J, SUTTON C, GOLDSMITH B R, et al. New tolerance factor to predict the stability of perovskite oxides and halides[J]. Science Advances, 2019, 5(2): eaav0693. |
| [34] | WANG Y, WANG Y, DOHERTY T A S, et al. Octahedral units in halide perovskites[J]. Nature Reviews Chemistry, 2025, 9(4): 261-277. |
| [35] | KIESLICH G, SUN S J, CHEETHAM A K. Solid-state principles applied to organic-inorganic perovskites: new tricks for an old dog[J]. Chemical Science, 2014, 5(12): 4712-4715. |
| [36] | LI Z, YANG M J, PARK J S, et al. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys[J]. Chemistry of Materials, 2016, 28(1): 284-292. |
| [37] | KUMAH D P, NGAI J H, KORNBLUM L. Epitaxial oxides on semiconductors: from fundamentals to new devices[J]. Advanced Functional Materials, 2020, 30(18): 1901597. |
| [38] | ROYER L. Recherches expérimentales sur l'épitaxie ou orientation mutuelle de cristaux d’espèces différentes[J]. Bulletin de la Société Française de Minéralogie, 1928, 51(1): 7-159. |
| [39] | CHEN P, LUNT R R. Organic step edge driven heteroquasiepitaxial growth of organic multilayer films[J]. Advanced Materials Interfaces, 2016, 3(17): 1600401. |
| [40] | LUNT R R, SUN K, KRÖGER M, et al. Ordered organic-organic multilayer growth[J]. Physical Review B, 2011, 83(6): 064114. |
| [41] | WANG L L, CHEN P, THONGPRONG N, et al. Unlocking the single-domain epitaxy of halide perovskites[J]. Advanced Materials Interfaces, 2017, 4(22): 1701003. |
| [42] | WANG L L, CHEN P, KUTTIPILLAI P S, et al. Epitaxial stabilization of tetragonal cesium tin iodide[J]. ACS Applied Materials & Interfaces, 2019, 11(35): 32076-32083. |
| [43] | WANG Y P, SUN X, CHEN Z Z, et al. High-temperature ionic epitaxy of halide perovskite thin film and the hidden carrier dynamics[J]. Advanced Materials, 2017, 29(35): 1702643. |
| [44] | CHEN J, MORROW D J, FU Y P, et al. Single-crystal thin films of cesium lead bromide perovskite epitaxially grown on metal oxide perovskite (SrTiO3)[J]. Journal of the American Chemical Society, 2017, 139(38): 13525-13532. |
| [45] | WANG Y F, LI X Z, LIU P, et al. Epitaxial growth of CsPbBr3/PbS single-crystal film heterostructures for photodetection[J]. Journal of Semiconductors, 2021, 42(11): 112001. |
| [46] | WANG Y L, JIA C C, FAN Z, et al. Large-area synthesis and patterning of all-inorganic lead halide perovskite thin films and heterostructures[J]. Nano Letters, 2021, 21(3): 1454-1460. |
| [47] | ABBASLI M, HIEULLE J, SCHRAGE J, et al. Tin halide perovskite epitaxial films on gold surfaces: atomic structure and stability[J]. Advanced Functional Materials, 2024, 34(40): 2403680. |
| [48] | RIEGER J, KIßLINGER T, RAABGRUND A, et al. Epitaxial inorganic metal-halide perovskite films with controlled surface terminations[J]. Physical Review Materials, 2023, 7(3): 035403. |
| [49] | YUAN M, FENG J G, LI H, et al. Remote epitaxial crystalline perovskites for ultrahigh-resolution micro-LED displays[J]. Nature Nanotechnology, 2025, 20(3): 381-387. |
| [50] | JIANG J, SUN X, CHEN X C, et al. Publisher Correction: carrier lifetime enhancement in halide perovskite via remote epitaxy[J]. Nature Communications, 2019, 10(1): 4783. |
| [51] | ZHOU Y, YUAN B L, WEI H M, et al. Stable CsPbX3 mixed halide alloyed epitaxial films prepared by pulsed laser deposition[J]. Applied Physics Letters, 2022, 120(11): 112109. |
| [52] | XING R F, SHI P, WU Z F, et al. Van der waals epitaxial deposition of CsPbBr3 films for flexible optoelectronic applications[J]. ACS Applied Electronic Materials, 2022, 4(3): 1351-1358. |
| [53] | CUI W Y, ZHOU Y, CHENG X M, et al. Epitaxial p-Si/CsPbBr3 heterostructure photodetector with enhanced green responsivity[J]. Applied Physics Letters, 2024, 125(18): 182102. |
| [54] | SHAN Y S, CUI W Y, ZHOU Y, et al. Lead-free perovskite Cs2AgBiBr6 epitaxial thin films for high-performance and air-stable photodetectors[J]. Journal of Materials Chemistry C, 2025, 13(18): 9072-9082. |
| [55] | YANG T B, JIN C, QU J T, et al. Solution epitaxy of halide perovskite thin single crystals for stable transistors[J]. ACS Applied Materials & Interfaces, 2021, 13(31): 37840-37848. |
| [56] | LIU H J, SUN X, LIU J X, et al. Lead-free perovskite Cs2AgBiBr6/Cs3Bi2Br9 single-crystalline heterojunction X-ray detector with enhanced sensitivity and ultra-low detection limit[J]. Science China Materials, 2025, 68(2): 561-570. |
| [57] | DA B C, HERATH M D, WANG D W, et al. High-voltage kV-class AlN metal-semiconductor field-effect transistors on single-crystal AlN substrates[J]. Applied Physics Express, 2024, 17(10): 104002. |
| [58] | JI Y J, KIM K S, KIM K H, et al. A brief review of plasma enhanced atomic layer deposition of Si3N4 [J]. Applied Science and Convergence Technology, 2019, 28(5): 142-147. |
| [59] | XU F, LI Y J, YUAN B L, et al. Large-area CsPbBr3 perovskite films grown with effective one-step RF-magnetron sputtering[J]. Journal of Applied Physics, 2021, 129(24): 245303. |
| [60] | MA X Y, UNIVERSITY W, et al. Plasma sputtering halide perovskite for photovoltaic applications[J]. ACS Materials Letters, 2024, 6(11): 5076-5092. |
| [61] | YUAN B L, WEI H M, LI J W, et al. Epitaxial growth of quasi-intrinsic CsPbBr3 film on a SrTiO3 substrate by pulsed laser deposition[J]. ACS Applied Electronic Materials, 2021, 3(12): 5592-5600. |
| [62] | JI L, HSU H Y, LEE J C, et al. High-performance photodetectors based on solution-processed epitaxial grown hybrid halide perovskites[J]. Nano Letters, 2018, 18(2): 994-1000. |
| [63] | CHEN Y M, LEI Y S, LI Y H, et al. Strain engineering and epitaxial stabilization of halide perovskites[J]. Nature, 2020, 577(7789): 209-215. |
| [64] | KELSO M V, MAHENDERKAR N K, CHEN Q Z, et al. Spin coating epitaxial films[J]. Science, 2019, 364(6436): 166-169. |
| [65] | LU C J, TANG L L. Comment on “Spin coating epitaxial films”[J]. Science, 2019, 365(6458): eaay3894. |
| [1] | MA Wenjun, ZHANG Guodong, SUN Xue, LIU Hongjie, LIU Jiaxin, TAO Xutang. Recent Advances in Halide Perovskite Semiconductor Single Crystals for Radiation Detection Applications [J]. Journal of Synthetic Crystals, 2025, 54(7): 1091-1099. |
| [2] | XIAO Daizhen, GAO Rong, CHEN Yi, MI Qixi. Growth, Electrical and Optical Properties of All Inorganic Tin Perovskite CsSnBr3 Crystals [J]. Journal of Synthetic Crystals, 2025, 54(7): 1245-1255. |
| [3] | ZHAO Hao, YU Bowen, LI Qi, LI Guangqing, LIU Yiyuan, LIN Na, LI Yang, MU Wenxiang, JIA Zhitai. Growth of LiGa5O8 Single Crystal Thin Films and Their Conductive Mechanism by the Mist-CVD Method [J]. Journal of Synthetic Crystals, 2025, 54(6): 997-1004. |
| [4] | LI Qingwen, ZHONG Min. Highly Efficient and Reproducible Sonochemical Synthesis of SbI3 and Its Films [J]. Journal of Synthetic Crystals, 2025, 54(6): 1042-1049. |
| [5] | YANG Zaihong, ZHOU Can, FAN Liuyan, ZHANG Yanhui, CHEN Zezhong, CHEN Pingping. Research Progress on Application of Machine Learning in Molecular Beam Epitaxy Growth [J]. Journal of Synthetic Crystals, 2025, 54(6): 924-934. |
| [6] | DU Qingbo, YANG Yapeng, GAO Xudong, ZHANG Zhi, ZHAO Xiaoyu, WANG Huiqi, LIU Yier, LI Guoqiang. Research Progress of Wide Band Gap Semiconductor Silicon Carbide Based Nuclear Radiation Detector [J]. Journal of Synthetic Crystals, 2025, 54(5): 737-756. |
| [7] | LI Shuai, ZHANG Lei. Research Progress on Near-Infrared Group Ⅳ-Ⅵ Semiconductor Quantum Dot Optical Fibers [J]. Journal of Synthetic Crystals, 2025, 54(5): 757-771. |
| [8] | YANG Wenjuan, BU Yuzhe, SAI Qinglin, QI Hongji. Dislocation Defects and Their Distribution Characteristics in Ga2O3 Crystal Grown by Edge-Defined Film-Fed Growth Method [J]. Journal of Synthetic Crystals, 2025, 54(3): 414-419. |
| [9] | WANG Yuefei, GAO Chong, WU Zhe, LI Bingsheng, LIU Yichun. Study on the Epitaxial Growth of Gallium Oxide Heterostructure and UV Photodetector by Double Chamber Interconnected MOCVD [J]. Journal of Synthetic Crystals, 2025, 54(3): 426-437. |
| [10] | WANG Ziming, ZHANG Yachao, FENG Qian, LIU Shiteng, LIU Yuhong, WANG Yao, WANG Long, ZHANG Jincheng, HAO Yue. ε-Ga2O3 Growth on c-Plane Sapphire Substrate with Metal-Organic Chemical Vapor Deposition [J]. Journal of Synthetic Crystals, 2025, 54(3): 420-425. |
| [11] | CHEN Junhong, HU Jianwen, WEI Zhongming. Research Progress of Gallium Oxide Micro/Nano Structure-Based Detectors [J]. Journal of Synthetic Crystals, 2025, 54(3): 491-510. |
| [12] | CHEN Xuyang, LI Haobo, QIN Huayao, XU Mingyao, LU Yinmei, HE Yunbin. A Novel Suboxide Chemical Vapor Transport Technique for Cost-Effective Growth of β-Ga2O3 Thick Films [J]. Journal of Synthetic Crystals, 2025, 54(3): 445-451. |
| [13] | HUANG Dongyang, HUANG Haotian, PAN Mingyan, XU Ziqian, JIA Ning, QI Hongji. Growth and Properties of β-Ga2O3 Single Crystal by Vertical Bridgman Method [J]. Journal of Synthetic Crystals, 2025, 54(2): 190-196. |
| [14] | SHAO Shuangyao, YANG Shuo, FENG Huayu, JIA Zhitai, TAO Xutang. Research Progress of Gallium Oxide Avalanche Photodetectors [J]. Journal of Synthetic Crystals, 2025, 54(2): 276-289. |
| [15] | WEI Yuxi, MA Xinyu, JIANG Zejun, WEI Jie, LUO Xiaorong. Research Progress of Ultra-Wide Bandgap β-Ga2O3 Power Devices on Novel Structures and Electro-Thermal Characteristics [J]. Journal of Synthetic Crystals, 2025, 54(2): 263-275. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS