Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (9): 1509-1524.DOI: 10.16553/j.cnki.issn1000-985x.2025.0066
• Research Articles • Previous Articles Next Articles
LU Runlin1(
), ZHENG Lili1(
), ZHANG Hui2, WANG Rensong3, HU Dongli3
Received:2025-04-01
Online:2025-09-20
Published:2025-09-23
Contact:
ZHENG Lili
CLC Number:
LU Runlin, ZHENG Lili, ZHANG Hui, WANG Rensong, HU Dongli. Impacts of Hot Wall CVD Process Conditions on Thickness Uniformity of 8-Inch SiC Epitaxial Layer[J]. Journal of Synthetic Crystals, 2025, 54(9): 1509-1524.
Fig.1 Schematic diagram of the epitaxial system. (a) Longitudinal x-z section; (b) y-z section of hot zone structure; (c) x-y section of the reaction chamber
Fig.2 Schematic diagram of the computational domain and boundary conditions of the epitaxial system (not to scale). Only the x-z section of the three-dimensional computational domain is presented
| Parameter | Material | Value |
|---|---|---|
Density/ (kg·m-3) | Susceptor[ | 1 740 |
| Insulation[ | 170 | |
| Quartz glass[ | 2 200 | |
Thermal conductivity/ (W·m-1·K-1) | Susceptor[ | 128.595-0.126 895T+6.884 01×10-5T2-1.799 46×10-8T3+1.791 50×10-12T4 |
| Insulation[ | -0.067 92+0.177 2exp(3.348×10-12T)+0.135 5exp(9.048×10-4T) | |
| Quartz glass[ | -0.985 470+0.018 209 1T-5.290 51×10-5T2+7.552 53×10-8T3-5.008 12×10-11T4+1.311 32×10-14T5 | |
Heat capacity/ (J·kg-1·K-1) | Susceptor[ | -159.879+3.655 02T-2.380 56×10-3T2+7.382 78×10-7T3-8.797 87×10-11T4 |
| Insulation[ | 600 | |
| Quartz glass[ | 931.7+0.256T-5.90×107/T2 |
Table 1 Thermophysical of materials used in simulations, with temperature T in K unit
| Parameter | Material | Value |
|---|---|---|
Density/ (kg·m-3) | Susceptor[ | 1 740 |
| Insulation[ | 170 | |
| Quartz glass[ | 2 200 | |
Thermal conductivity/ (W·m-1·K-1) | Susceptor[ | 128.595-0.126 895T+6.884 01×10-5T2-1.799 46×10-8T3+1.791 50×10-12T4 |
| Insulation[ | -0.067 92+0.177 2exp(3.348×10-12T)+0.135 5exp(9.048×10-4T) | |
| Quartz glass[ | -0.985 470+0.018 209 1T-5.290 51×10-5T2+7.552 53×10-8T3-5.008 12×10-11T4+1.311 32×10-14T5 | |
Heat capacity/ (J·kg-1·K-1) | Susceptor[ | -159.879+3.655 02T-2.380 56×10-3T2+7.382 78×10-7T3-8.797 87×10-11T4 |
| Insulation[ | 600 | |
| Quartz glass[ | 931.7+0.256T-5.90×107/T2 |
Fig.3 Distributions of temperature on the lower surface of reaction chamber with substrate rotation speed of 0 (a) and 50 r/min (b), and gas flows from left to right
Fig.4 Mole fraction versus susceptor coordinate along the center line of the lower surface of reaction chamber. (a) C-H species and organosilicon species; (b) Si-H-Cl species
Fig.5 Temperature and mole fraction of growth species versus susceptor coordinate along the center line of the lower surface of the reaction chamber (solid line) and a plane 11 mm above the lower surface (dashed line), including temperature (a), mole fraction of C2H2 (b), mole fraction of SiCl (c), mole fraction of Si (d)
Fig.6 Instantaneous growth rate distribution in the reaction zone in the baseline case (unit: μm·h-1). (a) Lower surface of the reaction zone; (b) upper surface of the reaction zone, and gas flows from left to right
Fig.7 Instantaneous growth rate (a) and temperature (b) change along the flow direction at the lower surface (solid line) and the upper surface (dotted line) of the reaction chamber
Fig.9 Distribution of instantaneous and actual growth rate versus radial coordinate. (a) Instantaneous growth rate of θ=0° (solid line), θ=180°(dash line) and their average value (dash-dot line); (b) the actual growth rate (solid line) and its approximation (dotted line)
| Operating condition | Range |
|---|---|
| Growth temperature/K | 1 823~2 023 |
| Gas flow rate/slm | 50~150 |
| Si/H2 ratio/% | 0.05~0.15 |
Table 2 Range of operating conditions in parametric analyses
| Operating condition | Range |
|---|---|
| Growth temperature/K | 1 823~2 023 |
| Gas flow rate/slm | 50~150 |
| Si/H2 ratio/% | 0.05~0.15 |
Fig.10 For growth temperatures of 1 823 (circle), 1 923 (triangle) and 2 023 K (square), temperature and mole fraction along the flow direction at the center line of the lower surface of the reaction chamber (solid line) and a plane 11 mm above the lower surface (dashed line), including temperature (a), mole fraction of C2H2 (b), mole fraction of SiCl (c), and mole fraction of Si (d)
Fig.11 For growth temperatures of 1 823 (circle), 1 923 (triangle) and 2 023 K (square), (a) the instantaneous growth rate along the flow direction, (b) the normalized actual growth rate (solid line) and its approximation (dotted line) along the radial direction of the substrate
Fig.13 For inlet flow rates of 50 (circle), 100 (triangle) and 150 slm (square), temperature and mole fraction along the flow direction at the center line of the lower surface of the reaction chamber (solid line) and a plane 11 mm above the lower surface (dashed line) , including temperature (a), mole fraction of C2H2 (b), mole fraction of SiCl (c), and mole fraction of Si (d)
Fig.14 For inlet flow rates of 50 (circle), 100 (triangle) and 150 slm (square), the instantaneous growth rate along the flow direction (a),the normalized actual growth rate (solid line) and its approximation (dotted line) along the radial direction of the substrate (b)
Fig.16 For inlet Si/H2 ratio of 0.05% (circle), 0.15% (triangle) and 0.25% (square), temperature and mole fraction along the flow direction at the center line of the lower surface of the reaction chamber (solid line) and a plane 11 mm above the lower surface (dashed line), including temperature (a), mole fraction of C2H2 (b), mole fraction of SiCl (c), and mole fraction of Si (d)
Fig.17 For inlet Si/H2 ratio of 0.05% (circle), 0.15% (triangle) and 0.25% (square), the instantaneous growth rate along the flow direction (a), the normalized actual growth rate (solid line) and its approximation (dotted line) along the radial direction of the substrate (b)
| [1] | TANG Z R, GU L, MA H P, et al. Influence of temperature and flow ratio on the morphology and uniformity of 4H-SiC epitaxial layers growth on 150 mm 4° off-axis substrates[J]. Crystals, 2023, 13(1): 62. |
| [2] |
GUO N, PEI Y C, YUAN W L, et al. Effect of TCS gas flow and pre-etching on homopitaxial growth of 4H-SiC[J]. RSC Advances, 2024, 14(23): 16574-16583.
DOI PMID |
| [3] | TANG Z R, GU L, JIN L, et al. Insights into the effect of susceptor rotational speed in CVD reactor on the quality of 4H-SiC epitaxial layer on homogeneous substrates[J]. Materials Today Communications, 2024, 38: 108037. |
| [4] | GONG X L, XIE T L, HU F, et al. High-quality 4H-SiC homogeneous epitaxy via homemade horizontal hot-wall reactor[J]. Coatings, 2024, 14(7): 911. |
| [5] | CRIPPA D, AZADMAND M, MAUCERI M, et al. Opening through 200 mm silicon carbide epitaxy[J]. Materials Science Forum, 2022, 1062: 146-151. |
| [6] | GONG X L, LI P, XIE T L, et al. High uniform N-type doping of 4H-SiC homoepitaxy based on a horizontal hot-wall reactor[J]. Journal of Crystal Growth, 2024, 648: 127877. |
| [7] | TANG Z R, ZHAO S B, LI J, et al. Optimizing the chemical vapor deposition process of 4H-SiC epitaxial layer growth with machine-learning-assisted multiphysics simulations[J]. Case Studies in Thermal Engineering, 2024, 59: 104507. |
| [8] | TIAN J, TANG Z R, TANG H Y, et al. Multi-objective optimization of 4H-SiC homoepitaxy chemical vapor deposition process fusing support vector machine with multiphysics simulations[J]. Materials Today Communications, 2025, 43: 111721. |
| [9] | YUAN W L, PEI Y C, GUO N, et al. The optimizing effect of nitrogen flow ratio on the homoepitaxial growth of 4H-SiC layers[J]. Crystals, 2023, 13(6): 935. |
| [10] | HÜTTINGER K J. CVD in hot wall reactors: the interaction between homogeneous gas-phase and heterogeneous surface reactions[J]. Chemical Vapor Deposition, 1998, 4(4): 151-158. |
| [11] | HOWELL J R, MENGUC M P, SIEGEL R. Thermal radiation heat transfer[M]. 6th ed. Boca Raton: CRC Press, 2015. |
| [12] | TAYLOR R, KRISHNA R. Multicomponent mass transfer[M]. New York, USA: Wiley, 1993. |
| [13] | HIRSCHFELDER J O, CURTISS C F, BIRD R B. Molecular theory of gases and liquids [M]. Corrected Printing with Notes Added Ed. Hoboken, New Jersey, USA: Wiley, 1964. |
| [14] | KUO K K, ACHARYA R. Applications of turbulent and multiphase combustion[M]. Hoboken, New Jersey, USA: Wiley, 2012. |
| [15] | DANIELSSON Ö, KARLSSON M, SUKKAEW P, et al. A systematic method for predictive in silico chemical vapor deposition[J]. The Journal of Physical Chemistry C, 2020, 124(14): 7725-7736. |
| [16] | ENTEGRIS I. Graphite properties and characteristics for industrial applications[R]. Decatur, Texas, USA: Entegris, Inc., 2020. |
| [17] | MA R. Modeling and design of PVT growth of silicon carbide crystals[D]. New York, USA: State University of New York at Stony Brook, 2003. |
| [18] | HAHN T A, KIRBY R K, WOLFE H C, et al. Thermal expansion of fused silica from 80 to 1 000 K-standard reference material 739[C]// Proceedings of the 1971 Thermal Expansion Symposium, Corning, New York (USA). AIP, 1972: 13-24. |
| [19] | SCHNEIDER S J. Engineered materials handbook volume 4: ceramics and glasses[M]. 1 ed. Metals Park, Ohio: ASM International, 1991. |
| [20] | LEE D W, KINGERY W D. Radiation energy transfer and thermal conductivity of ceramic oxides[J]. Journal of the American Ceramic Society, 1960, 43(11): 594-607. |
| [21] | VAN-VLACK L H. Physical ceramics: for engineers[M]. Reading, MA, USA: Addison-Wesley, 1964. |
| [22] | PEDERSEN H, OJAMäE L, DANIELSSON Ö. Perspective—current understanding of the halogenated deposition chemistry for chemical vapor deposition of SiC[J]. ECS Journal of Solid State Science and Technology, 2020, 9(10): 104006. |
| [23] |
PEDERSEN H, LEONE S, KORDINA O, et al. Chloride-based CVD growth of silicon carbide for electronic applications[J]. Chemical Reviews, 2012, 112(4): 2434-53.
DOI PMID |
| [1] | LI Xiang, PANG Jun, WANG Ming, LUO Yi, GONG Rui, ZHAO Jianhua, YU Jie. Preparation of Bi-Doped Re3Fe5O12 Magneto-Optical Films by Lead-Free Liquid-Phase Epitaxy Method [J]. Journal of Synthetic Crystals, 2025, 54(9): 1600-1606. |
| [2] | LI Yazhou, MA Zhanhong, YAO Weizhen, YANG Shaoyan, LIU Xianglin, LI Chengming, WANG Zhanguo. Effect of MOCVD Carrier Gas Flow Rate on GaN Epitaxial Growth [J]. Journal of Synthetic Crystals, 2025, 54(6): 979-985. |
| [3] | LI Xiang, CHEN Gen, SHEN Jie, ZHU Minghui. Effect of Substrate Type on Stress and Crystallinity of Growing Polycrystalline Diamond Film [J]. Journal of Synthetic Crystals, 2025, 54(6): 986-996. |
| [4] | YANG Zaihong, ZHOU Can, FAN Liuyan, ZHANG Yanhui, CHEN Zezhong, CHEN Pingping. Research Progress on Application of Machine Learning in Molecular Beam Epitaxy Growth [J]. Journal of Synthetic Crystals, 2025, 54(6): 924-934. |
| [5] | DU Qingbo, YANG Yapeng, GAO Xudong, ZHANG Zhi, ZHAO Xiaoyu, WANG Huiqi, LIU Yier, LI Guoqiang. Research Progress of Wide Band Gap Semiconductor Silicon Carbide Based Nuclear Radiation Detector [J]. Journal of Synthetic Crystals, 2025, 54(5): 737-756. |
| [6] | CHEN Danying, YAN Long, LUO Jiahao, ZHENG Zhenyu, JIANG Yong, ZHANG Kai, ZHOU Ning, LIAO Chenzi, GUO Shiping. Effect of C/Si Ratio on SiC Fast Homoepitaxial Growth in Vertical Hot-Wall CVD Reactor [J]. Journal of Synthetic Crystals, 2025, 54(4): 569-580. |
| [7] | QI Zhanguo, WANG Shouzhi, LI Qiubo, WANG Zhongxin, SHAO Huihui, LIU Lei, WANG Guodong, SUN Defu, YU Huidong, JIANG Kaize, ZHANG Shuang, CHEN Xiufang, XU Xiangang, ZHANG Lei. Preparation of 4-Inch High-Quality GaN Single Crystal Substrates [J]. Journal of Synthetic Crystals, 2025, 54(4): 717-720. |
| [8] | HAN Yu, JIAO Teng, YU Han, SAI Qinglin, CHEN Duanyang, LI Zhen, LI Yihan, ZHANG Zhao, DONG Xin. Effect of Substrate Crystal Planes on the Properties of Homoepitaxial n-Ga2O3 Thin Films Grown by MOCVD [J]. Journal of Synthetic Crystals, 2025, 54(3): 438-444. |
| [9] | QU Zhenyu, XU Wenhui, JIANG Haodong, LIANG Hengshuo, ZHAO Tiancheng, XIE Yinfei, SUN Huarui, ZOU Xinbo, YOU Tiangui, QI Hongji, HAN Genquan, OU Xin. Research Progress on Heterogeneous Substrate Integration Technology for Gallium Oxide [J]. Journal of Synthetic Crystals, 2025, 54(3): 470-490. |
| [10] | HU Jichao, ZHAO Qiyang, YANG Zhihao, YANG Ying, PENG Bo, DING Xiongjie, LIU Wei, ZHANG Hong. Simulation Study on the Effect of Gallium Source Temperature on the Temperature Field in LPCVD Gallium Oxide Epitaxy [J]. Journal of Synthetic Crystals, 2025, 54(3): 452-461. |
| [11] | WANG Ziming, ZHANG Yachao, FENG Qian, LIU Shiteng, LIU Yuhong, WANG Yao, WANG Long, ZHANG Jincheng, HAO Yue. ε-Ga2O3 Growth on c-Plane Sapphire Substrate with Metal-Organic Chemical Vapor Deposition [J]. Journal of Synthetic Crystals, 2025, 54(3): 420-425. |
| [12] | YAO Suhao, ZHANG Maolin, JI Xueqiang, YANG Lili, LI Shan, GUO Yufeng, TANG Weihua. Mist CVD Grown High-Phase-Purity α-Ga2O3 and Its Photoresponse Performance [J]. Journal of Synthetic Crystals, 2025, 54(2): 233-243. |
| [13] | LI Titao, LU Yaoping, CHEN Duanyang, QI Hongji, ZHANG Haizhong. Research on Gallium Oxide Homoepitaxy and Two-Dimensional Step-Flow Growth [J]. Journal of Synthetic Crystals, 2025, 54(2): 219-226. |
| [14] | GAO Jiaqing, QU Xiaoyong, WU Xiang, GUO Yonggang, WANG Yonggang, WANG Liang, TAN Xin, YANG Xinze. Tunneling Oxidation and Passivation Process of p-Type TOPCon Structure [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 133-138. |
| [15] | XU Wanli, GAN Yunhai, LI Yuewen, LI Bin, ZHENG Youdou, ZHANG Rong, XIU Xiangqian. High Rate HVPE Growth of High Uniformity 6-Inch GaN Thick Film [J]. JOURNAL OF SYNTHETIC CRYSTALS, 2025, 54(1): 11-16. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS