
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (11): 1867-1880.DOI: 10.16553/j.cnki.issn1000-985x.2025.0089
• 综合评述 • 下一篇
张琨1(
), 张路驰1, 刘平1, 陈天天2, 李天元1, 徐宗伟2(
), 程红娟3(
)
收稿日期:2025-04-22
出版日期:2025-11-20
发布日期:2025-12-11
通信作者:
徐宗伟,教授。E-mail:zongweixu@tju.edu.cn;
程红娟,高级工程师。E-mail:xiemn08@126.com
作者简介:张琨(1993—),男,山东省人,副教授。E-mail:zhangkun1531@163.com
基金资助:
ZHANG Kun1(
), ZHANG Luchi1, LIU Ping1, CHEN Tiantian2, LI Tianyuan1, XU Zongwei2(
), CHENG Hongjuan3(
)
Received:2025-04-22
Online:2025-11-20
Published:2025-12-11
摘要: β-Ga2O3作为超宽带隙半导体(带隙4.8~4.9 eV),凭借高Baliga性能因子、深紫外探测能力及抗辐射特性,成为功率电子器件、光电器件和核辐射探测器件的理想材料。本文系统综述了β-Ga2O3单晶生长与超精密加工的技术进展及未来挑战。单晶生长方面,导模法与垂直布里奇曼法已实现6英寸(1 inch=2.54 cm)晶圆量产,“铸造法”工艺制备8英寸晶圆技术达国际领先水平。掺杂策略(如Sn、Mg)可调控载流子浓度(1015~1019 cm-3),优化电学性能。针对材料的强各向异性和硬脆特性,多级研磨结合化学机械抛光(CMP)实现表面粗糙度(Ra)小于0.2 nm,大气等离子体刻蚀可进一步将Ra压缩至0.05 nm;超快激光加工结合液体辅助技术可制备无损伤微结构。未来需突破大尺寸晶体产率与表面缺陷控制,通过跨尺度损伤模型、原位监测及工艺优化,结合多场协同加工创新,推动β-Ga2O3在功率器件与深紫外探测领域的应用。
中图分类号:
张琨, 张路驰, 刘平, 陈天天, 李天元, 徐宗伟, 程红娟. 单晶β相氧化镓晶片的生长和超精密加工:最新技术和前景[J]. 人工晶体学报, 2025, 54(11): 1867-1880.
ZHANG Kun, ZHANG Luchi, LIU Ping, CHEN Tiantian, LI Tianyuan, XU Zongwei, CHENG Hongjuan. Growth and Ultra-Precision Processing of Single-Crystal β-Phase Gallium Oxide Wafers: State-of-the-Art Technology and Prospects[J]. Journal of Synthetic Crystals, 2025, 54(11): 1867-1880.
| 生长方式 | 最大晶体尺寸 | 生长方向 | 氛围 | 坩埚 | 核心优势 | 主要局限 |
|---|---|---|---|---|---|---|
| Cz | 2 inch | [010] | 有限的O2 | 铱 | 工艺成熟,易规模化; 可控掺杂浓度; 适合大批量生产。 | 熔体-晶体界面易出现鞍形变形,限制直径向不小于6英寸扩展。 |
| EFG | 6 inch slab | [010] | 有限的O2 | 铱 | Ir模具提供稳定热场; 可生长复杂截面的6英寸晶坯; 生长速率高(5~10 mm/h)。 | 严重依赖昂贵的Ir坩埚,设备投资与运行成本高。 |
| OFZ | 1 inch | 不同取向 | 各种O2 | 无坩埚 | 无坩埚,避免外来金属污染; 晶体纯度极高、位错密度低。 | 晶体直径通常不大于1英寸(受激光/感应加热光斑限制); 需在高真空或高纯O2/Ar氛中稳定生长。 |
| VB | 6 inch | 不同取向 | 空气 | 铂-30%铑 | 可在空气中直接生长(Pt-Rh/Ir坩埚); 晶体各向同性好,直径可扩展至6英寸。 | Rh/Ir溶出污染; 温度梯度和下拉速率窗口窄。 |
| OCCC | 2 inch | [010] | 空气 | 铜 | 水冷铜坩埚替代贵金属坩埚,成本约降40%; 频率可调,实现类似Cz的热场与界面形貌; 可获得高纯度晶体。 | 熔体对流不稳; 电绝缘晶体难以制备; 深坩埚(>50 mm)设计带来稳定性挑战。 |
表1 各种生长方式的特点
Table 1 Characteristics of various growth methods
| 生长方式 | 最大晶体尺寸 | 生长方向 | 氛围 | 坩埚 | 核心优势 | 主要局限 |
|---|---|---|---|---|---|---|
| Cz | 2 inch | [010] | 有限的O2 | 铱 | 工艺成熟,易规模化; 可控掺杂浓度; 适合大批量生产。 | 熔体-晶体界面易出现鞍形变形,限制直径向不小于6英寸扩展。 |
| EFG | 6 inch slab | [010] | 有限的O2 | 铱 | Ir模具提供稳定热场; 可生长复杂截面的6英寸晶坯; 生长速率高(5~10 mm/h)。 | 严重依赖昂贵的Ir坩埚,设备投资与运行成本高。 |
| OFZ | 1 inch | 不同取向 | 各种O2 | 无坩埚 | 无坩埚,避免外来金属污染; 晶体纯度极高、位错密度低。 | 晶体直径通常不大于1英寸(受激光/感应加热光斑限制); 需在高真空或高纯O2/Ar氛中稳定生长。 |
| VB | 6 inch | 不同取向 | 空气 | 铂-30%铑 | 可在空气中直接生长(Pt-Rh/Ir坩埚); 晶体各向同性好,直径可扩展至6英寸。 | Rh/Ir溶出污染; 温度梯度和下拉速率窗口窄。 |
| OCCC | 2 inch | [010] | 空气 | 铜 | 水冷铜坩埚替代贵金属坩埚,成本约降40%; 频率可调,实现类似Cz的热场与界面形貌; 可获得高纯度晶体。 | 熔体对流不稳; 电绝缘晶体难以制备; 深坩埚(>50 mm)设计带来稳定性挑战。 |
图5 常见β-Ga2O3晶圆的超精密加工方式。(a)晶圆旋转磨削示意图[57];(b)球盘摩擦磨损实验示意图[58];(c)ICP处理系统示意图[59]
Fig.5 Ultra-precision processing methods for common β-Ga2O3 wafers. (a) Schematic diagram of the wafer rotational grinding[57]; (b) ball-disk frictional wear experiment schematic[58]; (c) schematic diagram of ICP processing system[59]
| 参数 | 类别 | 特点 | 参考文献 |
|---|---|---|---|
| 磨料种类 | 金刚石 | 锋利切削刃,最佳表面完整性 | [ |
| 游离SiC/SiO2 | 难以实现(100)面无损抛光 | [ | |
| Al2O3 | 粗糙度均方根小于0.5 nm | [ | |
| 抛光液配方 | 酸性 | 生成可溶镓盐,MRR↑、Ra↓;最佳Ra~3.17 nm | [ |
| 碱性硅溶胶 | 配合毛毡垫可获平滑表面 | [ | |
| 油基 | 降低磨料渗透,减少解理伤 | [ | |
| 抛光垫材质 | PU(LP57)垫 | 表面形貌最佳 | [ |
| 硬度 | 硬度↑:MRR↑,但解理倾向加剧 | [ |
表2 抛光耗材与液体环境对抛光结果的影响
Table 2 Influence of polishing consumables and liquid environment on polishing results
| 参数 | 类别 | 特点 | 参考文献 |
|---|---|---|---|
| 磨料种类 | 金刚石 | 锋利切削刃,最佳表面完整性 | [ |
| 游离SiC/SiO2 | 难以实现(100)面无损抛光 | [ | |
| Al2O3 | 粗糙度均方根小于0.5 nm | [ | |
| 抛光液配方 | 酸性 | 生成可溶镓盐,MRR↑、Ra↓;最佳Ra~3.17 nm | [ |
| 碱性硅溶胶 | 配合毛毡垫可获平滑表面 | [ | |
| 油基 | 降低磨料渗透,减少解理伤 | [ | |
| 抛光垫材质 | PU(LP57)垫 | 表面形貌最佳 | [ |
| 硬度 | 硬度↑:MRR↑,但解理倾向加剧 | [ |
| [1] | HIGASHIWAKI M. β-Ga2O3 material properties, growth technologies, and devices: a review[J]. AAPPS Bulletin, 2022, 32(1): 3. |
| [2] | HIGASHIWAKI M, SASAKI K, KURAMATA A, et al. Development of gallium oxide power devices[J]. Physica Status Solidi (a), 2014, 211(1): 201470201. |
| [3] | TU R, LI X Y, XU Q F, et al. Laser CVD growth of uniquely-oriented β-Ga2O3 films on quartz substrate with ultrafast photoelectric response[J]. Small, 2023, 19(30): e2300154. |
| [4] | CHEN J W, TANG H L, LIU B, et al. High-performance X-ray detector based on single-crystal β-Ga2O3:Mg[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 2879-2886. |
| [5] | LI B C, WANG Y B, LUO Z D, et al. Gallium oxide (Ga2O3) heterogeneous and heterojunction power devices[J]. Fundamental Research, 2025, 5(2): 804-817. |
| [6] | GUO D, GUO Q, CHEN Z, et al. Review of Ga2O3-based optoelectronic devices[J]. Materials Today Physics, 2019, 11: 100157. |
| [7] | ZHAO J L, BYGGMÄSTAR J, HE H, et al. Complex Ga2O3 polymorphs explored by accurate and general-purpose machine-learning interatomic potentials[J]. NPJ Computational Materials, 2023, 9: 159. |
| [8] | ORLANDI F, MEZZADRI F, CALESTANI G, et al. Thermal expansion coefficients of β-Ga2O3 single crystals[J]. Applied Physics Express, 2015, 8(11): 111101. |
| [9] | MEIßNER M, BERNHARDT N, NIPPERT F, et al. Anisotropy of optical transitions in β-Ga2O3 investigated by polarized photoluminescence excitation spectroscopy[J]. Applied Physics Letters, 2024, 124(15): 152102. |
| [10] | KIM Y, BAEK J, BAIK K H, et al. Photochemical wet etching of (001) plane β-phase Ga2O3, and its anisotropic etching behavior[J]. Applied Surface Science, 2024, 665: 160330. |
| [11] | FU B, JIA Z T, MU W X, et al. A review of β-Ga2O3 single crystal defects, their effects on device performance and their formation mechanism[J]. Journal of Semiconductors, 2019, 40(1): 011804. |
| [12] | CHASE A O. Growth of β-Ga2O3 by the verneuil technique[J]. Journal of the American Ceramic Society, 1964, 47(9): 470. |
| [13] | TOMM Y, REICHE P, KLIMM D, et al. Czochralski grown Ga2O3 crystals[J]. Journal of Crystal Growth, 2000, 220(4): 510-514. |
| [14] | AIDA H, NISHIGUCHI K, TAKEDA H, et al. Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method[J]. Japanese Journal of Applied Physics, 2008, 47(11R): 8506. |
| [15] | VÍLLORA E G, SHIMAMURA K, YOSHIKAWA Y, et al. Large-size β-Ga2O3 single crystals and wafers[J]. Journal of Crystal Growth, 2004, 270(3/4): 420-426. |
| [16] | FU B, MU W X, ZHANG J, et al. A study on the technical improvement and the crystalline quality optimization of columnar β-Ga2O3 crystal growth by an EFG method[J]. CrystEngComm, 2020, 22(30): 5060-5066. |
| [17] | XIA N, LIU Y Y, WU D, et al. β-Ga2O3 bulk single crystals grown by a casting method[J]. Journal of Alloys and Compounds, 2023, 935: 168036. |
| [18] | WANG Y S, ZHU M Z, LIU Y. Growth process, defects, and dopants of bulk β-Ga2O3 semiconductor single crystals[J]. China Foundry, 2024, 21(5): 491-506. |
| [19] | GALAZKA Z, IRMSCHER K, UECKER R, et al. On the bulk β-Ga2O3 single crystals grown by the Czochralski method[J]. Journal of Crystal Growth, 2014, 404: 184-191. |
| [20] | GALAZKA Z, IRMSCHER K, SCHEWSKI R, et al. Czochralski-grown bulk β-Ga2O3 single crystals doped with mono-, di-, tri-, and tetravalent ions[J]. Journal of Crystal Growth, 2020, 529: 125297. |
| [21] | GALAZKA Z, GANSCHOW S, FIEDLER A, et al. Doping of Czochralski-grown bulk β-Ga2O3 single crystals with Cr, Ce and Al[J]. Journal of Crystal Growth, 2018, 486: 82-90. |
| [22] | GALAZKA Z, FIEDLER A, POPP A, et al. Bulk single crystals and physical properties of β-(Al x Ga1- x)2O3 (x=0-0.35) grown by the Czochralski method[J]. Journal of Applied Physics, 2023, 133(3): 035702. |
| [23] | GALAZKA Z, GANSCHOW S, SEYIDOV P, et al. Two inch diameter, highly conducting bulk β-Ga2O3 single crystals grown by the Czochralski method[J]. Applied Physics Letters, 2022, 120(15): 152101. |
| [24] | YUAN Y, HAO W B, MU W X, et al. Toward emerging gallium oxide semiconductors: a roadmap[J]. Fundamental Research, 2021, 1(6): 697-716. |
| [25] | KURAMATA A, KOSHI K, WATANABE S, et al. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth[J]. Japanese Journal of Applied Physics, 2016, 55(12): 1202A2. |
| [26] | LI P K, BU Y Z, CHEN D Y, et al. Investigation of the crack extending downward along the seed of the β-Ga2O3 crystal grown by the EFG method[J]. CrystEngComm, 2021, 23(36): 6300-6306. |
| [27] | MASTRO M A, KURAMATA A, CALKINS J, et al. Perspective: opportunities and future directions for Ga2O3 [J]. ECS Journal of Solid State Science and Technology, 2017, 6(5): P356-P359. |
| [28] | 我国首颗6英寸氧化镓单晶成功制备[J]. 超硬材料工程, 2023, 35(1): 11. |
| Successful preparation of China’s first 6-inch gallium oxide single crystal[J]. Superhard Material Engineering, 2023, 35(1): 11 (in Chinese). | |
| [29] | 穆文祥, 贾志泰, 陶绪堂. 4英寸氧化镓单晶生长与性能[J]. 人工晶体学报, 2022, 51(9-10): 1749-1753. |
| MU W X, JIA Z T, TAO X T. Growth and properties of 4 inch β-Ga2O3 single crystal[J]. Journal of Synthetic Crystals, 2022, 51(9-10): 1749-1753 (in Chinese). | |
| [30] | 王 佩, 穆文祥, 侯 童, 等. 导模法生长β-Ga2O3晶体中的小角晶界[J]. 硅酸盐学报, 2023, 51(6): 1406-1411. |
| WANG P, MU W X, HOU T, et al. Low angle grain boundaries in β-Ga2O3 crystal grown by EFG method[J]. Journal of the Chinese Ceramic Society, 2023, 51(6): 1406-1411 (in Chinese). | |
| [31] | VÍLLORA E G, SHIMAMURA K, YOSHIKAWA Y, et al. Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping[J]. Applied Physics Letters, 2008, 92(20): 202120. |
| [32] | ONUMA T, FUJIOKA S, YAMAGUCHI T, et al. Correlation between blue luminescence intensity and resistivity in β-Ga2O3 single crystals[J]. Applied Physics Letters, 2013, 103(4): 041910. |
| [33] | USUI Y, OYA T, OKADA G, et al. Ce-doped Ga2O3 single crystalline semiconductor showing scintillation features[J]. Optik, 2017, 143: 150-157. |
| [34] | YANAGIDA T, KATO T, NAKAUCHI D, et al. Photoluminescence and scintillation properties of Eu-doped Ga2O3 single crystals grown by the floating zone method[J]. Japanese Journal of Applied Physics, 2022, 61: SB1040. |
| [35] | BHAUMIK I, SOHARAB M, BHATT R, et al. Influence of Al content on the optical band-gap enhancement and lattice structure of (Ga1- x Al x)2O3 single crystal[J]. Optical Materials, 2020, 109: 110351. |
| [36] | WU D, LI C, MA K K, et al. The surface tension of Ga2O3 melt measured by a drop-weight method in an optical floating-zone furnace[J]. Semiconductor Science and Technology, 2023, 38(8): 085008. |
| [37] | HOSHIKAWA K, KOBAYASHI T, MATSUKI Y, et al. 2-inch diameter (100) β-Ga2O3 crystal growth by the vertical Bridgman technique in a resistance heating furnace in ambient air[J]. Journal of Crystal Growth, 2020, 545: 125724. |
| [38] | OHBA E, KOBAYASHI T, TAISHI T, et al. Growth of (100), (010) and (001) β-Ga2O3 single crystals by vertical Bridgman method[J]. Journal of Crystal Growth, 2021, 556: 125990. |
| [39] | HOSHIKAWA K, OHBA E, KOBAYASHI T, et al. Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air[J]. Journal of Crystal Growth, 2016, 447: 36-41. |
| [40] | HOSHIKAWA K, KOBAYASHI T, OHBA E, et al. 50 mm diameter Sn-doped (001) β-Ga2O3 crystal growth using the vertical Bridgeman technique in ambient air[J]. Journal of Crystal Growth, 2020, 546: 125778. |
| [41] | UEDA Y, IGARASHI T, KOSHI K, et al. Two-inch Fe-doped β-Ga2O3 (010) substrates prepared using vertical Bridgman method[J]. Japanese Journal of Applied Physics, 2023, 62: SF1006. |
| [42] | GAO X, MA K K, JIN Z, et al. Characteristics of 4-inch (100) oriented Mg-doped β-Ga2O3 bulk single crystals grown by a casting method[J]. Journal of Alloys and Compounds, 2024, 987: 174162. |
| [43] | YAN Y C, GAO X, LIU D, et al. Oxygen-close-packed (310)-plane substrates of β-Ga2O3 grown by the casting method[J]. Applied Physics Letters, 2024, 125(10): 102101. |
| [44] | WU D F, YAN Y C, SUN X, et al. Characterization of dislocations in (310) β-Ga2O3 single crystal grown by the casting method[J]. Journal of Alloys and Compounds, 2025, 1018: 179092. |
| [45] | LIU D, YAN Y C, BI Y F, et al. Temperature effects on anisotropic mechanical properties of cast-grown β-Ga2O3 [J]. Journal of Applied Physics, 2025, 137(12): 125702. |
| [46] | KAMADA K, SASAKI R, TOMIDA T, et al. Crucible-free growth of bulk β-Ga2O3 single-crystal scintillator under oxidizing atmosphere[J]. Crystals, 2023, 13(6): 921. |
| [47] | AKIRA Y, VLADIMIR K, MASAO Y, et al. Bulk single-crystal growth of Ce/Gd3(Al, Ga)5O12 from melt without a precious metal crucible by pulling from a cold container[J]. Crystal Growth & Design, 2023, 23(4): 2048-2054. |
| [48] | YOSHIKAWA A, KOCHURIKHIN V, TOMIDA T, et al. Growth of bulk β-Ga2O3 crystals from melt without precious-metal crucible by pulling from a cold container[J]. Scientific Reports, 2024, 14(1): 14881. |
| [49] | KAKIMOTO K, TAKAHASHI I, TOMIDA T, et al. Heat transfer in β-Ga2O3 crystal grown through a skull melting method[J]. Journal of Crystal Growth, 2024, 629: 127553. |
| [50] | HUANG C J, ZHOU H, ZHU Y W, et al. Effect of chemical action on the chemical mechanical polishing of β-Ga2O3(100) substrate[J]. Precision Engineering, 2019, 56: 184-190. |
| [51] | ZHANG K, XU Z W, WANG H, et al. Patterning the surface structure of transparent hard-brittle material β-Ga2O3 by ultrashort pulse laser[J]. Ceramics International, 2022, 48(19): 27650-27657. |
| [52] | MU W X, JIA Z T, YIN Y R, et al. High quality crystal growth and anisotropic physical characterization of β-Ga2O3 single crystals grown by EFG method[J]. Journal of Alloys and Compounds, 2017, 714: 453-458. |
| [53] | HOU T, ZHANG W Y, MU W X, et al. The anisotropy dependence of deformation mechanism of cleavage planes in β-Ga2O3 single crystal[J]. Materials Science in Semiconductor Processing, 2023, 158: 107357. |
| [54] | 周 海, 宋 放, 韦嘉辉, 等. 氧化镓晶体不同晶面的纳米力学性能[J]. 硅酸盐学报, 2020, 48(1): 135-139. |
| ZHOU H, SONG F, WEI J H, et al. Nanomechanical properties of β-Ga2O3 with different crystal planes[J]. Journal of the Chinese Ceramic Society, 2020, 48(1): 135-139 (in Chinese). | |
| [55] | WU Y Q, GAO S, KANG R K, et al. Deformation patterns and fracture stress of beta-phase gallium oxide single crystal obtained using compression of micro-pillars[J]. Journal of Materials Science, 2019, 54(3): 1958-1966. |
| [56] | 徐亚萌, 周 海, 张杰群, 等. 易解理氧化镓晶体微尺度力学行为试验研究[J]. 中国机械工程, 2022, 33(18): 2234-2240+2248. |
| XU Y M, ZHOU H, ZHANG J Q, et al. Experimental study of micro scale mechanics behavior of cleavable gallium oxide crystals[J]. China Mechanical Engineering, 2022, 33(18): 2234-2240+2248 (in Chinese). | |
| [57] | GAO S, YANG X, GUO X G, et al. Abrasive machining induced surface layer damage behavior and formation mechanism of monocrystalline β-Ga2O3: a comparative study of nanoindentation and nanogrinding[J]. Materials Characterization, 2023, 206: 113441. |
| [58] | WANG T, YAN Q S, XIONG Q, et al. Effect of abrasive on tribological behavior and polishing effect of β-Ga2O3(100) substrate[J]. Materials Science in Semiconductor Processing, 2024, 172: 108059. |
| [59] | ZHANG Y J, XIAO Y X, LIANG J W, et al. Towards atomic-scale smooth surface manufacturing of β-Ga2O3 via highly efficient atmospheric plasma etching[J]. International Journal of Extreme Manufacturing, 2025, 7(1): 015105. |
| [60] | YANG X, KANG R K, GAO S, et al. Subsurface damage pattern and formation mechanism of monocrystalline β-Ga2O3 in grinding process[J]. Frontiers of Mechanical Engineering, 2022, 17(2): 21. |
| [61] | GAO S, WU Y Q, KANG R K, et al. Nanogrinding induced surface and deformation mechanism of single crystal β-Ga2O3 [J]. Materials Science in Semiconductor Processing, 2018, 79: 165-170. |
| [62] | 杨 鑫, 康仁科, 任佳伟, 等. 氧化镓单晶的磨削材料去除机理和损伤演化研究[J]. 湖南大学学报(自然科学版), 2024, 51(4): 10-19. |
| YANG X, KANG R K, REN J W, et al. Study on material removal mechanism and damage evolution of monocrystalline gallium oxide in grinding process[J]. Journal of Hunan University (Natural Sciences), 2024, 51(4): 10-19 (in Chinese). | |
| [63] | 蒋 网, 周 海, 计 健, 等. 易解理氧化镓晶片的半固结研磨工艺[J]. 表面技术, 2022, 51(3): 178-185+198. |
| JIANG W, ZHOU H, JI J, et al. Semi-consolidated grinding process of easily cleaved gallium oxide wafer[J]. Surface Technology, 2022, 51(3): 178-185+198 (in Chinese). | |
| [64] | 高 崇, 韦金汕, 欧阳政, 等. 氧化镓单晶在酸碱条件下的腐蚀坑形貌研究[J]. 人工晶体学报, 2023, 52(12): 2186-2195. |
| GAO C, WEI J S, OUYANG Z, et al. Gallium oxide single crystal: morphology of corrosion pits under acid- and alkaline-base conditions[J]. Journal of Synthetic Crystals, 2023, 52(12): 2186-2195 (in Chinese). | |
| [65] | HU S X, ZHOU H, YANG Y M, et al. Experimental investigation on axial ultrasonic-assisted grinding of different crystal surfaces of single-crystal gallium oxide[J]. The International Journal of Advanced Manufacturing Technology, 2024, 131(9): 4543-4556. |
| [66] | WANG D, LIU L, ZHANG Z Y, et al. Atomic-scale planarization surface of quartz glass induced by novel green chemical mechanical polishing using three ingredients[J]. Materials Today Sustainability, 2024, 25: 100669. |
| [67] | LIAO M E, HUYNH K, MATTO L, et al. Optimization of chemical mechanical polishing of (010) β-Ga2O3 [J]. Journal of Vacuum Science & Technology A, 2023, 41(1): 013205. |
| [68] | 吴 成, 李 军, 侯天逸, 等. 抛光垫及抛光液对固结磨料抛光氧化镓晶体的影响[J]. 金刚石与磨料磨具工程, 2022, 42(6): 720-727. |
| WU C, LI J, HOU T Y, et al. Effect of pad and slurry on fixed abrasive polishing of gallium oxide crystal[J]. Diamond & Abrasives Engineering, 2022, 42(6): 720-727 (in Chinese). | |
| [69] | BLEVINS J D, STEVENS K, LINDSEY A, et al. Development of large diameter semi-insulating gallium oxide (Ga2O3) substrates[J]. IEEE Transactions on Semiconductor Manufacturing, 2019, 32(4): 466-472. |
| [70] | HUANG C J, ZHOU H, XIA C T, et al. Effect of abrasive grit shape on polishing of β-Ga2O3(100) substrate[J]. Precision Engineering, 2020, 61: 65-71. |
| [71] | 龚 凯, 周 海, 韦嘉辉, 等. 抛光垫特性对氧化镓CMP影响的实验研究[J]. 工具技术, 2018, 52(6): 29-32. |
| GONG K, ZHOU H, WEI J H, et al. Experimental study on influence of polishing pad characteristics on gallium oxide CMP[J]. Tool Engineering, 2018, 52(6): 29-32 (in Chinese). | |
| [72] | WANG T, XIONG Q, YAN Q S, et al. Effects of polishing disc material and substrate surface temperature on the tribological behaviors and machining results of β-Ga2O3(100)[J]. The International Journal of Advanced Manufacturing Technology, 2024, 134(1): 765-780. |
| [73] | 冯 伟, 周 海, 黄传锦, 等. 晶面及液体环境对氧化镓研磨过程摩擦学特性的影响研究[J]. 表面技术, 2021, 50(5): 192-197. |
| FENG W, ZHOU H, HUANG C J, et al. Study on the influence of crystal surface and liquid environment on the tribological properties of gallium oxide during lapping[J]. Surface Technology, 2021, 50(5): 192-197 (in Chinese). | |
| [74] | HOU T, MA X, DONG Y, et al. Subsurface damage evolution of β-Ga2O3 (010) substrates during lapping and chemical mechanical polishing[J]. Surfaces and Interfaces, 2024, 51: 104655. |
| [75] | YANG R, XIA N, MA K K, et al. The anisotropy of deformation behaviors in (100) and (010) plane of monoclinic β-Ga2O3 single crystals[J]. Journal of Alloys and Compounds, 2024, 978: 173556. |
| [76] | HU H D, FENG Z, WANG Y B, et al. The role of surface pretreatment by low temperature O2 gas annealing for β-Ga2O3 Schottky barrier diodes[J]. Applied Physics Letters, 2022, 120(7): 073501. |
| [77] | LEE H K, YUN H J, SHIM K H, et al. Improvement of dry etch-induced surface roughness of single crystalline β-Ga2O3 using post-wet chemical treatments[J]. Applied Surface Science, 2020, 506: 144673. |
| [78] | 高 尚, 李洪钢, 康仁科, 等. 新一代半导体材料氧化镓单晶的制备方法及其超精密加工技术研究进展[J]. 机械工程学报, 2021, 57(9): 213-232. |
| GAO S, LI H G, KANG R K, et al. Recent advance in preparation and ultra-precision machining of new generation semiconductor material of β-Ga2O3 single crystals[J]. Journal of Mechanical Engineering, 2021, 57(9): 213-232 (in Chinese). | |
| [79] | FANG F Z. Atomic and close-to-atomic scale manufacturing: perspectives and measures[J]. International Journal of Extreme Manufacturing, 2020, 2(3): 030201. |
| [80] | ZHANG Y J, TANG J, LIANG S X, et al. Atomic-scale smoothing of semiconducting oxides via plasma-enabled atomic-scale reconstruction[J]. International Journal of Machine Tools and Manufacture, 2024, 196: 104119. |
| [81] | YOO J H, RAFIQUE S, LANGE A, et al. Lifetime laser damage performance of β-Ga2O3 for high power applications[J]. APL Materials, 2018, 6(3): 036105. |
| [82] | FU B, HE G H, MU W X, et al. Laser damage mechanism and in situ observation of stacking fault relaxation in a β-Ga2O3 single crystal by the EFG method[J]. CrystEngComm, 2021, 23(20): 3724-3730. |
| [83] | AHN M, SARRACINO A, ANSARI A, et al. Surface morphology and straight crack generation of ultrafast laser irradiated β-Ga2O3 [J]. Journal of Applied Physics, 2019, 125(22): 223104. |
| [84] | ZHANG K, XU Z W, DONG B, et al. Process exploration of β-Ga2O3 blind hole processing by water-assisted femtosecond laser technology[J]. Journal of Alloys and Compounds, 2023, 939: 168769. |
| [85] | 田 龙, 黄传真, 刘 盾, 等. 激光辅助水射流微铣削单晶β-Ga2O3衬底的实验研究[J]. 中国机械工程, 2023, 34(13): 1559-1567. |
| TIAN L, HUANG C Z, LIU D, et al. Experimental study of laser assisted water jet micromilling of single crystal β-Ga2O3 substrates[J]. China Mechanical Engineering, 2023, 34(13): 1559-1567 (in Chinese). | |
| [86] | AHN M, SARRACINO A, ANSARI A, et al. Unique material modifications of Ga2O3 enabled by ultrafast laser irradiation[C]//Oxide-based Materials and Devices XI. February 1-6, 2020. San Francisco, USA. SPIE, 2020: 20. |
| [87] | RAMDIN D N, DEANGELIS E, NOOR M Y, et al. Point defect distributions in ultrafast laser-induced periodic surface structures on β-Ga2O3 [J]. Journal of Applied Physics, 2024, 136(13): 135701. |
| [88] | YAN M Z, ZHAO J L, BYGGMÄSTAR J, et al. A radial distribution function based recognition algorithm of point defects in large-scale β-Ga2O3 systems[J]. The Journal of Physical Chemistry Letters, 2024, 15(42): 10677-10685. |
| [89] | QIN X, ZHANG J Q, LIU J, et al. Heterogeneous wafer bonding of ultra-wide bandgap Ga2O3: a review[J]. Materials Today Physics, 2024, 48: 101557. |
| [90] | SHEN Z H, XU W H, CHEN Y, et al. Wafer-scale single-crystalline β-Ga2O3 thin film on SiC substrate by ion-cutting technique with hydrophilic wafer bonding at elevated temperatures[J]. Science China Materials, 2023, 66(2): 756-763. |
| [91] | SHEN Z H, XU W H, XU Y, et al. The effect of oxygen annealing on characteristics of β-Ga2O3 solar-blind photodetectors on SiC substrate by ion-cutting process[J]. Journal of Alloys and Compounds, 2021, 889: 161743. |
| [92] | REN Q H, XU W H, SHEN Z H, et al. Solar-blind photodetector based on single crystal Ga2O3 film prepared by a unique ion-cutting process[J]. ACS Applied Electronic Materials, 2021, 3(1): 451-460. |
| [93] | XU W H, YOU T G, MU F W, et al. Thermodynamics of ion-cutting of β-Ga2O3 and wafer-scale heterogeneous integration of a β-Ga2O3 thin film onto a highly thermal conductive SiC substrate[J]. ACS Applied Electronic Materials, 2022, 4(1): 494-502. |
| [94] | ZHAO J, FERNÁNDEZ J G, AZAROV A, et al. Crystallization instead of amorphization in collision cascades in gallium oxide[J]. arXiv preprint, 2024: 2401.07675. |
| [1] | 宋昱杉, 陈浩, 李松, 杨明超, 杨松泉, 杨森, 周磊簜, 耿莉, 郝跃, 欧阳晓平. 低温超临界流体工艺对退化的Ni/β-Ga2O3肖特基势垒二极管电学性能的影响[J]. 人工晶体学报, 2025, 54(9): 1574-1583. |
| [2] | 李晓旭, 石蔡语, 沈磊, 曾光, 李晓茜, 陈宇畅, 卢红亮. β-Ga2O3纳米带场效应晶体管及日盲紫外光电探测器研究进展[J]. 人工晶体学报, 2025, 54(8): 1352-1368. |
| [3] | 刘首廷, 温旭杰, 韩文斌, 李陈哲, 宋伟, 崔建钢, 宋松, 李勇, 孙德辉, 刘宏. 2~3英寸掺镁近化学计量比钽酸锂晶体生长[J]. 人工晶体学报, 2025, 54(8): 1396-1402. |
| [4] | 王淳, 王坤, 宋相满, 任林, 张浩. 共掺杂β-Ga2O3导电性质第一性原理研究[J]. 人工晶体学报, 2025, 54(8): 1426-1432. |
| [5] | 王斌, 王晓莉, 侯越云, 刘娇, 刘珊. 紫外氟化钙晶体的生长技术[J]. 人工晶体学报, 2025, 54(8): 1369-1378. |
| [6] | 徐庄婕, 巴延双, 习鹤, 白福慧, 陈大正, 朱卫东, 张春福. 高质量钙钛矿单晶生长及其X射线探测性能表征[J]. 人工晶体学报, 2025, 54(7): 1229-1237. |
| [7] | 马文君, 张国栋, 孙雪, 刘宏杰, 刘嘉欣, 陶绪堂. 卤化物钙钛矿半导体单晶及核辐射探测器研究进展[J]. 人工晶体学报, 2025, 54(7): 1091-1099. |
| [8] | 朱丽涛, 刘磊, 原帅, 周声浪, 张华利, 汪晨, 高宇, 曹建伟, 余学功, 杨德仁. 钢缆直径对大尺寸直拉单晶硅生长稳定性的影响[J]. 人工晶体学报, 2025, 54(6): 942-948. |
| [9] | 陈子航, 王晓丹, 刘坚, 刘鹏, 徐晓东, 徐军. 微下拉法Er∶CNGG晶体的生长及光谱性能研究[J]. 人工晶体学报, 2025, 54(6): 935-941. |
| [10] | 杨再洪, 周灿, 范柳燕, 张燕辉, 陈泽中, 陈平平. 机器学习在分子束外延生长的应用进展[J]. 人工晶体学报, 2025, 54(6): 924-934. |
| [11] | 于丰, 郑强, 齐婷玉, 张郁柏, 马亚丽, 贾松岩, 李雪. 白云石精制液可控制备高长径比碳酸钙晶须的研究[J]. 人工晶体学报, 2025, 54(5): 898-908. |
| [12] | 蒋先龙, 郑玮涛, 朱允中. 原位诊断铌酸锂晶体生长界面的翻转现象[J]. 人工晶体学报, 2025, 54(4): 533-542. |
| [13] | 齐占国, 王守志, 李秋波, 王忠新, 邵慧慧, 刘磊, 王国栋, 孙德福, 于汇东, 蒋铠泽, 张爽, 陈秀芳, 徐现刚, 张雷. 4英寸高质量GaN单晶衬底制备[J]. 人工晶体学报, 2025, 54(4): 717-720. |
| [14] | 沈睿, 郁鑫鑫, 李忠辉, 陈端阳, 赛青林, 谯兵, 周立坤, 董鑫, 齐红基, 陈堂胜. 氧化镓肖特基二极管硼离子注入终端技术研究[J]. 人工晶体学报, 2025, 54(3): 524-529. |
| [15] | 霍晓青, 张胜男, 周金杰, 王英民, 程红娟, 孙启升. 3~4英寸Fe掺高阻β-Ga2O3单晶的制备及其性能研究[J]. 人工晶体学报, 2025, 54(3): 407-413. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS