
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (8): 1352-1368.DOI: 10.16553/j.cnki.issn1000-985x.2025.0061
李晓旭1(
), 石蔡语1, 沈磊1, 曾光1, 李晓茜1, 陈宇畅1, 卢红亮1,2(
)
收稿日期:2025-03-26
出版日期:2025-08-20
发布日期:2025-09-01
通信作者:
卢红亮,博士,教授。E-mail:作者简介:李晓旭(2002—),男,河北省人,博士研究生。E-mail:24112020018@m.fudan.edu.cn
基金资助:
LI Xiaoxu1(
), SHI Caiyu1, SHEN Lei1, ZENG Guang1, LI Xiaoxi1, CHEN Yuchang1, LU Hongliang1,2(
)
Received:2025-03-26
Online:2025-08-20
Published:2025-09-01
摘要: β相氧化镓(β-Ga2O3)由于具有直接和超宽带隙(~4.9 eV)、高击穿电场(~9 MV/cm),以及优异的热稳定性和化学稳定性等优点,广泛应用于高温、高压、高频及日盲紫外光电探测器等领域。从β-Ga2O3单晶块体上机械剥离出β-Ga2O3纳米带作为沟道来探究新型β-Ga2O3器件结构不仅具有很大的灵活性,也将极大地降低成本。近年来,虽然β-Ga2O3纳米带场效应晶体管及日盲紫外光电探测器的研究已取得了很大进展,但器件的综合性能依然受限而不能满足商业化的需求,尤其是迁移率较低且响应度低。本文首先介绍了β-Ga2O3材料的基本性质;接着对β-Ga2O3纳米带场效应晶体管及日盲紫外光电探测器的研究现状进行总结与分析;最后指出β-Ga2O3基器件面对的困难与挑战,例如界面优化问题、器件可靠性系统研究缺乏等。
中图分类号:
李晓旭, 石蔡语, 沈磊, 曾光, 李晓茜, 陈宇畅, 卢红亮. β-Ga2O3纳米带场效应晶体管及日盲紫外光电探测器研究进展[J]. 人工晶体学报, 2025, 54(8): 1352-1368.
LI Xiaoxu, SHI Caiyu, SHEN Lei, ZENG Guang, LI Xiaoxi, CHEN Yuchang, LU Hongliang. Research Progress on β-Ga2O3 Nanobelt Field-Effect Transistors and Solar-Blind Ultraviolet Photodetectors[J]. Journal of Synthetic Crystals, 2025, 54(8): 1352-1368.
| 特性 | Si | GaAs | 4H-SiC | GaN | β-Ga2O3 |
|---|---|---|---|---|---|
| 禁带宽度/eV | 1.1 | 1.43 | 3.25 | 3.4 | 4.6~4.9 |
| 熔点/℃ | 1 420 | 1 238 | 2 830 | 1 700 | 1 740 |
| 相对介电常数 | 11.8 | 12.9 | 9.7 | 9 | 10 |
| 击穿场强/(MV·cm-1) | 0.3 | 0.4 | 2.5 | 3.3 | 8 |
| 电子迁移率/(cm2·V-1·s-1) | 1 480 | 8 400 | 1 000 | 1 250 | 300 |
| 电子饱和速度/(107 cm·s-1) | 1 | 1.2 | 2 | 2.5 | 1.8~2 |
| 热导率/(W·cm-1·K-1) | 1.5 | 0.5 | 4.9 | 2.3 | 0.1~0.3 |
| 巴利加优值(eμEc3) | 1 | 14.7 | 340 | 870 | 3 444 |
表1 常见宽禁带半导体材料与Si、GaAs的特性[4]
Table 1 Properties of common wide bandgap semiconductor materials with Si and GaAs[4]
| 特性 | Si | GaAs | 4H-SiC | GaN | β-Ga2O3 |
|---|---|---|---|---|---|
| 禁带宽度/eV | 1.1 | 1.43 | 3.25 | 3.4 | 4.6~4.9 |
| 熔点/℃ | 1 420 | 1 238 | 2 830 | 1 700 | 1 740 |
| 相对介电常数 | 11.8 | 12.9 | 9.7 | 9 | 10 |
| 击穿场强/(MV·cm-1) | 0.3 | 0.4 | 2.5 | 3.3 | 8 |
| 电子迁移率/(cm2·V-1·s-1) | 1 480 | 8 400 | 1 000 | 1 250 | 300 |
| 电子饱和速度/(107 cm·s-1) | 1 | 1.2 | 2 | 2.5 | 1.8~2 |
| 热导率/(W·cm-1·K-1) | 1.5 | 0.5 | 4.9 | 2.3 | 0.1~0.3 |
| 巴利加优值(eμEc3) | 1 | 14.7 | 340 | 870 | 3 444 |
图3 Sn掺杂Ga2O3金属-半导体场效应晶体管结构及其电学特性测试结果[73]。所制备器件的横截面图(a)、光显图(b);器件的转移特性曲线(c)与输出特性曲线(d)
Fig.3 Schematic structure and electrical characteristics test result of Sn-doped Ga2O3 metal-semiconductor field-effect transistors[73]. Schematic cross-section (a) and optical micrograph (b) of Ga2O3 MESFET; transfer characteristics (c) and output characteristics (d) of Ga2O3 MESFET
图4 背栅结构β-Ga2O3场效应晶体管制备流程及电学特性测试结果[75]。(a)β-Ga2O3纳米带场效应晶体管制备流程图;器件的转移特性曲线(b)与输出特性曲线(c)
Fig.4 Process flow and electrical characteristics test result of β-Ga2O3 field-effect transistors with back-gate structure[75]. (a) Schematic process flow for nanomembrane β-Ga2O3 field-effect transistors; transfer characteristics (b) and output characteristics (c) of β-Ga2O3 field-effect transistor
图5 双栅结构β-Ga2O3场效应晶体管结构示意图及电学特性测试结果[58]。器件结构示意图(a)、光显图(b);(c)器件分别在背栅、顶栅,以及双栅控制下的输出特性曲线;(d)器件分别在顶栅和双栅控制下的转移特性曲线
Fig.5 Schematic structure and electrical characteristics test result of β-Ga2O3 field-effect transistors with double-gate[58]. Schematic structure (a) and optical micrograph (b) of β-Ga2O3 field-effect transistors; (c) output characteristics of β-Ga2O3 flake based FET with front, back, and both gates; (d) transfer characteristics of β-Ga2O3 flake based FET with front, back, and both gates
图6 增强型β-Ga2O3场效应晶体管结构示意图及电学特性测试结果[66]。(a)器件结构示意图;(b)β-Ga2O3纳米带表面的形貌图;耗尽型β-Ga2O3纳米带晶体管的输出特性曲线(c)、转移特性曲线(d);增强型β-Ga2O3纳米带晶体管的输出特性曲线(e)、转移特性曲线(f)
Fig.6 Schematic structure and electrical characteristics test result of enhanced β-Ga2O3 field effect transistor[66]. (a) Schematic structure of β-Ga2O3 field effect transistor; (b) morphology of the surface of β-Ga2O3 nanobelt; output characteristics (c) and transfer characteristics (d) of depletion-type β-Ga2O3 nanobelt transistor; output characteristics (e) and transfer characteristics (f) of the enhanced β-Ga2O3 nanobelt transistor
图7 双场板β-Ga2O3场效应晶体管结构示意图及对应转移与击穿特性曲线[59]。双场板器件结构示意图(a)、光显图(b);所制备场效应晶体管的转移曲线(c)与击穿特性(d)
Fig.7 Schematic structure and electrical characteristics test result of dual-field plated β-Ga2O3 field effect transistors[59].Schematic structure (a) and optical micrograph (b) of dual-field plated; transfer characteristics (c) and breakdown characteristics (d) of β-Ga2O3 nano-FETs
图8 低温对二维β-Ga2O3场效应晶体管电学特性的影响[76]。(a)具有100 nm厚SiO2介质层的底栅β-Ga2O3沟道场效应晶体管器件示意图;(b)300 K下β-Ga2O3场效应晶体管器件的转移曲线;阈值电压(c)、电流开关比及亚阈值摆幅(d)随温度变化曲线
Fig.8 Effect of low temperature on the electrical characteristics of two-dimensional β-Ga2O3 field effect transistors[76]. (a) Device schematic of a bottom-gate β-Ga2O3 channel FET with 100 nm thick SiO2 gate barrier; (b) log-scale transfer characteristics of the β-Ga2O3 nanobelt FET under different low Vds values at 300 K; temperature dependence of threshold voltage (c), Ion/Ioff ratio and subthreshold swing (d)
图9 β-Ga2O3纳米带日盲紫外光电探测器制备流程及光电测试结果[77]。(a)β-Ga2O3基日盲紫外探测器的制备流程;(b)制备的β-Ga2O3基日盲紫外探测器在不同波段、栅压为0 V的条件下的时间响应图;(c)器件在254 nm紫外光照下的上升时间和下降时间;(d)器件在不同波段下的光响应率
Fig.9 Fabrication process and photoelectric test results of β-Ga2O3 nanobelt solar-blind ultraviolet photodetectors[77]. (a) Schematic of the entire exfoliated β-Ga2O3 flake based photodetector fabrication process; (b) time-dependent photoresponse of the fabricated photodetector under various illumination conditions (254, 365, 532 and 650 nm light exposure) with a gate voltage of 0 V. (c) rise and decay time of the photodetector under 254 nm UV illumination; (d) responsivity of the device at different wavelengths
图10 石墨烯顶栅的β-Ga2O3基日盲紫外光电探测器制备流程及光电测试结果[79]。(a)石墨烯材料作为顶栅的β-Ga2O3基日盲紫外光电晶体管的制备流程图;器件在黑暗和254 nm紫外光照下的输出特性曲线(b)、转移特性曲线(c);(d)在254 nm紫外光照下的时间响应
Fig.10 Fabrication process and photoelectric test results of β-Ga2O3-based solar-blind ultraviolet photodetector with graphene material as the top gate[79]. (a) Preparation process of β-Ga2O3-based solar-blind ultraviolet photodetector with graphene material as the top gate; output characteristics (b) and transfer characteristics (c) under darkness condition and 254 nm UV illumination; (d) time-dependent photoresponse under 254 nm UV illumination
图11 β-Ga2O3基日盲紫外光电探测器结构示意图及光电测试结果[80]。(a)制备的β-Ga2O3基日盲紫外光电晶体管的结构示意图;(b)器件在263 nm光照条件下不同光功率密度的转移曲线
Fig.11 Schematic structure and photoelectric test results of β-Ga2O3-based solar-blind ultraviolet photodetector[80]. (a) Schematic structure of β-Ga2O3 microflake solar-blind ultraviolet phototransistor; (b) transfer characteristics of β-Ga2O3 microflake solar-blind ultraviolet phototransistor at different light intensity under 263 nm illumination
图12 背栅结构增强型β-Ga2O3基日盲紫外光电晶体管示意图及其光电测试结果[81]。(a) β-Ga2O3薄膜背栅MOSFET的结构示意图;(b)MOSFET器件的转移特性曲线;(c)D1 MOS PD在黑暗条件下的输出特性曲线;(d) D1 MOS PD在黑暗和254 nm光照强度为100 μW/cm2下的输出特性曲线
Fig.12 Schematic structure and photoelectric test results of the enhanced β-Ga2O3-based solar-blind ultraviolet phototransistor with back-gate[81]. (a) Schematic of β-Ga2O3 film back-gated MOSFET; (b) transfer characteristics of all the MOSFET devices; (c) output characteristics of D1 MOS PD in the dark; (d) output characteristics of D1 MOS PD in the dark and under 254 nm light illumination of 100 μW/cm2
图13 HfO2作为栅介质β-Ga2O3基日盲紫外光电探测器结构示意图及其光电测试结果[82]。(a)制备的β-Ga2O3基日盲紫外光电晶体管结构示意图;在黑暗和254 nm光照条件下的输出特性曲线(b)、转移特性曲线(c);(d)在254 nm光照条件下的时间响应图
Fig.13 Schematic structure and optoelectronic test results of β-Ga2O3-based solar-blind ultraviolet photodetector with HfO2 as gate dielectric[82]. (a) Schematic structure of β-Ga2O3 solar-blind ultraviolet phototransistor; output characteristics (b) and transfer characteristics (c) under the dark and 254 nm illumination; (d) time-dependent photoresponse under 254 nm illumination
图14 Ta掺杂背栅结构β-Ga2O3光电晶体管结构示意图及其神经形态应用[84]。(a)背栅结构β-Ga2O3光电晶体管的结构示意图;(b)黑暗条件及250 nm不同光功率密度照射下转移曲线;(c)突触行为示意图;(d)β-Ga2O3器件的单个光脉冲的瞬时响应;(e)光电神经网络结构图;(f)神经网络训练数据集例子(上)及200个训练周期后输出图像(下)
Fig.14 Schematic structure and neuromorphic applications of Ta-doped back-gate structured β-Ga2O3 phototransistor[84]. (a) Schematic structure of the back-gate structured β-Ga2O3 phototransistor; (b) transfer characteristics in the dark and under different illumination Pin at 250 nm; (c) schematic representation of biological symapses; (d) the transient response of Ids for singe light pulse with the time interval of 3 s; (e) the optoelectronic neural network structure; (f) real photos (top) used for training and the synaptic weights of 200 corresponding output neurons (bottom)
| [1] | PAUL D J. Si/SiGe heterostructures: from material and physics to devices and circuits[J]. Semiconductor Science and Technology, 2004, 19(10): R75-R108. |
| [2] | BRENNAN K, HESS K. High field transport in GaAs, InP and InAs[J]. Solid-State Electronics, 1984, 27(4): 347-357. |
| [3] | CHO J, BOZORG-GRAYELI E, ALTMAN D H, et al. Low thermal resistances at GaN-SiC interfaces for HEMT technology[J]. IEEE Electron Device Letters, 2012, 33(3): 378-380. |
| [4] | PEARTON S J, YANG J C, CARY P H, et al. A review of Ga2O3 materials, processing, and devices[J]. Applied Physics Reviews, 2018, 5(1): 011301. |
| [5] | XUE H, HE Q, JIAN G, et al. An overview of the ultrawide bandgap Ga2O3 semiconductor-based Schottky barrier diode for power electronics application[J]. Nanoscale Research Letters, 2018, 13: 290. |
| [6] | ZHANG M L, LIU Z, YANG L L, et al. β-Ga2O3-based power devices: a concise review[J]. Crystals, 2022, 12(3): 406. |
| [7] | XU W H, ZHANG Y H, HAO Y, et al. First demonstration of waferscale heterogeneous integration of Ga2O3 MOSFETs on SiC and Si substrates by ion-cutting process[C]// 2019 IEEE International Electron Devices Meeting (IEDM). December 7-11, 2019. FranciscoSan, CA, USA. IEEE, 2019: 12. 5.1-12.5.4. |
| [8] | GELLER S. Crystal structure of β-Ga2O3[J]. The Journal of Chemical Physics, 1960, 33(3): 676-684. |
| [9] | KAUR D, KUMAR M. A strategic review on gallium oxide based deep-ultraviolet photodetectors: recent progress and future prospects[J]. Advanced Optical Materials, 2021, 9(9): 2002160. |
| [10] | OSHIMA T, OKUNO T, FUJITA S. Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors[J]. Japanese Journal of Applied Physics, 2007, 46(11R): 7217. |
| [11] | GUO D Y, WU Z P, LI P G, et al. Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology[J]. Optical Materials Express, 2014, 4(5): 1067. |
| [12] | VOGT P, BIERWAGEN O. Reaction kinetics and growth window for plasma-assisted molecular beam epitaxy of Ga2O3: Incorporation of Ga vs. Ga2O desorption[J]. Applied Physics Letters, 2016, 108(7): 072101. |
| [13] | MUKHOPADHYAY P, SCHOENFELD W V. Tin gallium oxide solar-blind photodetectors on sapphire grown by molecular beam epitaxy[J]. Applied Optics, 2019, 58(13): D22-D27. |
| [14] | MI W, MA J, ZHU Z, et al. Epitaxial growth of Ga2O3 thin films on MgO (110) substrate by metal-organic chemical vapor deposition[J]. Journal of Crystal Growth, 2012, 354(1): 93-97. |
| [15] | MI W, MA J, LI Z, et al. Characterization of Sn-doped β-Ga2O3 films deposited on MgO (100) substrate by MOCVD[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(10): 7889-7894. |
| [16] | RAFIQUE S, HAN L, TADJER M J, et al. Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition[J]. Applied Physics Letters, 2016, 108(18): 182105. |
| [17] | MURAKAMI H, NOMURA K, GOTO K, et al. Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy[J]. Applied Physics Express, 2015, 8(1): 015503. |
| [18] | KALYGINA V M, ALMAEV A V, NOVIKOV V A, et al. Solar-blind UV detectors based on β-Ga2O3 films[J]. Semiconductors, 2020, 54(6): 682-686. |
| [19] | SUN R, WANG G G, ZHANG H Y, et al. Microstructure, surface morphology and optical properties of N-incorporated Ga2O3 thin films on sapphire substrates[J]. Journal of Alloys and Compounds, 2013, 580: 517-521. |
| [20] | TAKAKURA K, FUNASAKI S, TSUNODA I, et al. Investigation of the Si doping effect in β-Ga2O3 films by co-sputtering of gallium oxide and Si[J]. Physica B: Condensed Matter, 2012, 407(15): 2900-2902. |
| [21] | LU Y M, LI C, CHEN X H, et al. Preparation of Ga2O3 thin film solar-blind photodetectors based on mixed-phase structure by pulsed laser deposition[J]. Chinese Physics B, 2019, 28(1): 018504. |
| [22] | CHEN Z W, WANG X, ZHANG F B, et al. Temperature dependence of luminescence spectra in europium doped Ga2O3 film[J]. Journal of Luminescence, 2016, 177: 48-53. |
| [23] | CHEN Y C, CHEN D B, ZENG G, et al. High performance solar-blind photodetectors based on plasma-enhanced atomic layer deposition of thin Ga2O3 films annealed under different atmosphere[J]. Journal of Alloys and Compounds, 2023, 936: 168127. |
| [24] | YANG Y, LIU W M, HUANG T T, et al. Low deposition temperature amorphous ALD-Ga2O3 thin films and decoration with MoS2 multilayers toward flexible solar-blind photodetectors[J]. ACS Applied Materials & Interfaces, 2021, 13(35): 41802-41809. |
| [25] | LEE S H, LEE K M, LEE S W. Influences of process temperature on a phase of Ga2O3 thin films grown by atomic layer deposition on sapphire[J]. Bulletin of the Korean Chemical Society, 2020, 41(12): 1190-1193. |
| [26] | LIU X T, WANG S Q, HE L, et al. Growth characteristics and properties of Ga2O3 films fabricated by atomic layer deposition technique[J]. Journal of Materials Chemistry C, 2022, 10(43): 16247-16264. |
| [27] | MINAMI T, SHIRAI T, NAKATANI T, et al. Electroluminescent devices with Ga2O3∶Mn thin-film emitting layer prepared by sol-gel process[J]. Japanese Journal of Applied Physics, 2000, 39(6A): L524-L526. |
| [28] | UEDA O, IKENAGA N, KOSHI K, et al. Structural evaluation of defects in β-Ga2O3 single crystals grown by edge-defined film-fed growth process[J]. Japanese Journal of Applied Physics, 2016, 55(12): 1202BD. |
| [29] | XU J J, ZHENG W, HUANG F. Gallium oxide solar-blind ultraviolet photodetectors: a review[J]. Journal of Materials Chemistry C, 2019, 7(29): 8753-8770. |
| [30] | YUAN Y, HAO W B, MU W X, et al. Toward emerging gallium oxide semiconductors: a roadmap[J]. Fundamental Research, 2021, 1(6): 697-716. |
| [31] | QIN Y, LONG S B, DONG H, et al. Review of deep ultraviolet photodetector based on gallium oxide[J]. Chinese Physics B, 2019, 28(1): 018501. |
| [32] | PRATIYUSH A S, MUAZZAM U U, KUMAR S, et al. Optical float-zone grown bulk β-Ga2O3-based linear MSM array of UV-C photodetectors[J]. IEEE Photonics Technology Letters, 2019, 31(12): 923-926. |
| [33] | SAURAT M, REVCOLEVSCHI A. Preparation by floating zone method, of refractory oxide monocrystals, in particular of gallium oxide, and study of some of their properties[J]. Revue International Des Hautes Temperatures Et Des Refractaires, 1971, 8(3-4): 291-304. |
| [34] | ZHANG J G, LI B, XIA C T, et al. Growth and spectral characterization of β-Ga2O3 single crystals[J]. Journal of Physics and Chemistry of Solids, 2006, 67(12): 2448-2451. |
| [35] | GALAZKA Z, UECKER R, IRMSCHER K, et al. Czochralski growth and characterization of β-Ga2O3 single crystals[J]. Crystal Research and Technology, 2010, 45(12): 1229-1236. |
| [36] | TAK B R, KUMAR S, KAPOOR A K, et al. Recent advances in the growth of gallium oxide thin films employing various growth techniques-a review[J]. Journal of Physics D Applied Physics, 2021, 54(45): 453002. |
| [37] | MITDANK R, DUSARI S, BÜLOW C, et al. Temperature-dependent electrical characterization of exfoliated β-Ga2O3 micro flakes[J]. Physica Status Solidi (a), 2014, 211(3): 543-549. |
| [38] | KWON Y, LEE G, OH S, et al. Tuning the thickness of exfoliated quasi-two-dimensional β-Ga2O3 flakes by plasma etching[J]. Applied Physics Letters, 2017, 110(13): 131901. |
| [39] |
LIU Y, WANG P Q, WANG Y L, et al. Van der waals integrated devices based on nanomembranes of 3D materials[J]. Nano Letters, 2020, 20(2): 1410-1416.
DOI PMID |
| [40] | LI Z W, YE R Q, FENG R, et al. Graphene quantum dots doping of MoS2 monolayers[J]. Advanced Materials, 2015, 27(35): 5235-5240. |
| [41] | ZHANG Y, LI S Y, LI Z L, et al. High-performance two-dimensional perovskite Ca2Nb3O10 UV photodetectors[J]. Nano Letters, 2021, 21(1): 382-388. |
| [42] | WANG D H, LIU X, KANG Y, et al. Bidirectional photocurrent in p-n heterojunction nanowires[J]. Nature Electronics, 2021, 4(9): 645-652. |
| [43] | GONG C H, CHU J W, QIAN S F, et al. Large-scale ultrathin 2D wide-bandgap BiOBr nanoflakes for gate-controlled deep-ultraviolet phototransistors[J]. Advanced Materials, 2020, 32(12): 1908242. |
| [44] |
GUO F W, YANG B, YUAN Y B, et al. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection[J]. Nature Nanotechnology, 2012, 7(12): 798-802.
DOI PMID |
| [45] | KONG W Y, WU G A, WANG K Y, et al. Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application[J]. Advanced Materials, 2016, 28(48): 10725-10731. |
| [46] | ROY R, HILL V G, OSBORN E F. Polymorphism of Ga2O3 and the system Ga2O3∶H2O[J]. Journal of the American Chemical Society, 1952, 74(3): 719-722. |
| [47] | HOU X H, ZOU Y N, DING M F, et al. Review of polymorphous Ga2O3 materials and their solar-blind photodetector applications[J]. Journal of Physics D Applied Physics, 2021, 54(4): 043001. |
| [48] | AHMADI E, OSHIMA Y. Materials issues and devices of α- and β-Ga2O3[J]. Journal of Applied Physics, 2019, 126(16): 160901. |
| [49] | OTERO AREÁN C, BELLAN A L, MENTRUIT M P, et al. Preparation and characterization of mesoporous γ-Ga2O3[J]. Microporous and Mesoporous Materials, 2000, 40(1/2/3): 35-42. |
| [50] | LI L D, WEI W, BEHRENS M. Synthesis and characterization of α-, β-, and γ-Ga2O3 prepared from aqueous solutions by controlled precipitation[J]. Solid State Sciences, 2012, 14(7): 971-981. |
| [51] | FORNARI R, PAVESI M, MONTEDORO V, et al. Thermal stability of ε-Ga2O3 polymorph[J]. Acta Materialia, 2017, 140: 411-416. |
| [52] |
PLAYFORD H Y, HANNON A C, BARNEY E R, et al. Structures of uncharacterised polymorphs of gallium oxide from total neutron diffraction[J]. Chemistry-A European Journal, 2013, 19(8): 2803-2813.
DOI PMID |
| [53] | GUO D, GUO Q, CHEN Z, et al. Review of Ga2O3-based optoelectronic devices[J]. Materials Today Physics, 2019, 11: 100157. |
| [54] |
CHEN X H, REN F F, GU S L, et al. Review of gallium-oxide-based solar-blind ultraviolet photodetectors[J]. Photonics Research, 2019, 7(4): 381-415.
DOI |
| [55] | YANG G, JANG S, REN F, et al. Influence of high-energy proton irradiation on β-Ga2O3 nanobelt field-effect transistors[J]. ACS Applied Materials & Interfaces, 2017, 9(46): 40471-40476. |
| [56] | BAE J, KIM H W, KANG I H, et al. High breakdown voltage quasi-two-dimensional β-Ga2O3 field-effect transistors with a boron nitride field plate[J]. Applied Physics Letters, 2018, 112(12): 122102. |
| [57] | MA J, CHO H J, HEO J, et al. Asymmetric double-gate β-Ga2O3 nanomembrane field-effect transistor for energy-efficient power devices[J]. Advanced Electronic Materials, 2019, 5(6): 1800938. |
| [58] | AHN S, REN F, KIM J, et al. Effect of front and back gates on β-Ga2O3 nano-belt field-effect transistors[J]. Applied Physics Letters, 2016, 109(6): 062102. |
| [59] | BAE J, KIM H W, KANG I H, et al. Dual-field plated β-Ga2O3 nano-FETs with an off-state breakdown voltage exceeding 400 V[J]. Journal of Materials Chemistry C, 2020, 8(8): 2687-2692. |
| [60] | KIM J, KIM J. Monolithically integrated enhancement-mode and depletion-mode β-Ga2O3 MESFETs with graphene-gate architectures and their logic applications[J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7310-7316. |
| [61] | KIM J, OH S, MASTRO M A, et al. Exfoliated β-Ga2O3 nano-belt field-effect transistors for air-stable high power and high temperature electronics[J]. Physical Chemistry Chemical Physics, 2016, 18(23): 15760-15764. |
| [62] | KIM J, MASTRO M A, TADJER M J, et al. Heterostructure WSe2-Ga2O3 junction field-effect transistor for low-dimensional high-power electronics[J]. ACS Applied Materials & Interfaces, 2018, 10(35): 29724-29729. |
| [63] | MOSER N, MCCANDLESS J, CRESPO A, et al. Ge-doped β-Ga2O3 MOSFETs[J]. IEEE Electron Device Letters, 2017, 38(6): 775-778. |
| [64] | LIU Y X, DU L L, LIANG G D, et al. Ga2O3 field-effect-transistor-based solar-blind photodetector with fast response and high photo-to-dark current ratio[J]. IEEE Electron Device Letters, 2018, 39(11): 1696-1699. |
| [65] | WANG X X, YAN S Q, MU W X, et al. Enhancement-mode Ga2O3 FET with high mobility using p-type SnO heterojunction[J]. IEEE Electron Device Letters, 2022, 43(1): 44-47. |
| [66] | ZHOU H, SI M W, ALGHAMDI S, et al. High-performance depletion/enhancement-ode β-Ga2O3 on insulator (GOOI) field-effect transistors with record drain currents of 600/450 mA/mm[J]. IEEE Electron Device Letters, 2017, 38(1): 103-106. |
| [67] | LI Z, LIU Y H, ZHANG A Y, et al. Quasi-two-dimensional β-Ga2O3 field effect transistors with large drain current density and low contact resistance via controlled formation of interfacial oxygen vacancies[J]. Nano Research, 2019, 12(1): 143-148. |
| [68] | ZHOU H, MAIZE K, QIU G, et al. β-Ga2O3 on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect[J]. Applied Physics Letters, 2017, 111(9): 092102. |
| [69] | ZENG K, SINGISETTI U. Temperature dependent quasi-static capacitance-voltage characterization of SiO2/β-Ga2O3 interface on different crystal orientations[J]. Applied Physics Letters, 2017, 111(12): 122108. |
| [70] | CHEN J X, LI X X, TAO J J, et al. Fabrication of a Nb-doped β-Ga2O3 nanobelt field-effect transistor and its low-temperature behavior[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8437-8445. |
| [71] | TADJER M J, MAHADIK N A, WHEELER V D, et al. Editors' choice communication: a (001) β-Ga2O3 MOSFET with +2.9 V threshold voltage and HfO2 gate dielectric[J]. ECS Journal of Solid State Science and Technology, 2016, 5(9): P468-P470. |
| [72] | FIEDLER A, SCHEWSKI R, BALDINI M, et al. Influence of incoherent twin boundaries on the electrical properties of β-Ga2O3 layers homoepitaxially grown by metal-organic vapor phase epitaxy[J]. Journal of Applied Physics, 2017, 122(16): 165701. |
| [73] | HIGASHIWAKI M, SASAKI K, KURAMATA A, et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates[J]. Applied Physics Letters, 2012, 100(1): 013504. |
| [74] | HIGASHIWAKI M, SASAKI K, KAMIMURA T, et al. Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics[J]. Applied Physics Letters, 2013, 103(12): 123511. |
| [75] | HWANG W S, VERMA A, PEELAERS H, et al. High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes[J]. Applied Physics Letters, 2014, 104(20): 203111. |
| [76] | CHEN J X, LIU B Y, GU Y, et al. Influence of ultralow temperature on quasi-2-D β-Ga2O3 field-effect transistors[J]. IEEE Transactions on Electron Devices, 2024, 71(7): 4233-4239. |
| [77] | OH S, KIM J, REN F, et al. Quasi-two-dimensional β-gallium oxide solar-blind photodetectors with ultrahigh responsivity[J]. Journal of Materials Chemistry C, 2016, 4(39): 9245-9250. |
| [78] | OH S, KIM C K, KIM J. High responsivity β-Ga2O3 metal-semiconductor-metal solar-blind photodetectors with ultraviolet transparent graphene electrodes[J]. ACS Photonics, 2018, 5(3): 1123-1128. |
| [79] | KIM S, OH S, KIM J. Ultrahigh deep-UV sensitivity in graphene-gated β-Ga2O3 phototransistors[J]. ACS Photonics, 2019, 6(4): 1026-1032. |
| [80] | YU S J, ZHAO X L, DING M F, et al. High-detectivity β-Ga2O3 microflake solar-blind phototransistor for weak light detection[J]. IEEE Electron Device Letters, 2021, 42(3): 383-386. |
| [81] | JI X Q, LU C, WANG J J, et al. Boosting solar blind UV detector by constructing enhanced-mode MOS field-effect transistors based on β-Ga2O3 film[J]. IEEE Sensors Journal, 2023, 23(19): 22399-22405. |
| [82] | LI Z, FENG Z Q, XU Y, et al. High performance β-Ga2O3 solar-blind metal-oxide-semiconductor field-effect phototransistor with hafnium oxide gate dielectric process[J]. IEEE Electron Device Letters, 2021, 42(4): 545-548. |
| [83] | AHN J, MA J, LEE D, et al. Ultrahigh deep-ultraviolet responsivity of a β-Ga2O3/MgO heterostructure-based phototransistor[J]. ACS Photonics, 2021, 8(2): 557-566. |
| [84] | LI X X, ZENG G, LI Y C, et al. Highly sensitive and stable β-Ga2O3 DUV phototransistor with local back-gate structure and its neuromorphic application[J]. Nano Research, 2022, 15(10): 9359-9367. |
| [1] | 王淳, 王坤, 宋相满, 任林, 张浩. 共掺杂β-Ga2O3导电性质第一性原理研究[J]. 人工晶体学报, 2025, 54(8): 1426-1432. |
| [2] | 于牧冰, 高岗, 赵勇彪, 朱嘉琦. 蓝光准二维钙钛矿结晶动力学调控及其电致发光器件研究[J]. 人工晶体学报, 2025, 54(7): 1132-1145. |
| [3] | 闵月淇, 谢文钦, 谢亮, 安康. Pd掺杂调控CsPbX3(X=Cl,Br,I)光电性能研究[J]. 人工晶体学报, 2025, 54(4): 605-616. |
| [4] | 李琪, 付博, 余博文, 赵昊, 林娜, 贾志泰, 赵显, 陶绪堂. Al/In掺杂与β-Ga2O3(100)面孪晶相互作用的第一性原理研究[J]. 人工晶体学报, 2025, 54(3): 371-377. |
| [5] | 姜博文, 纪为国, 张璐, 范骐鸣, 潘明艳, 黄浩天, 齐红基. 导模法生长β-Ga2O3晶体流场对称性研究[J]. 人工晶体学报, 2025, 54(3): 378-385. |
| [6] | 张献, 岳志昂, 赵恩钦, 魏帅康, 叶文轩, 黄敏怡, 辛美波, 赵洋, 王辉. Ga2O3∶Si薄膜制备及其日盲紫外光电探测器性能研究[J]. 人工晶体学报, 2025, 54(3): 462-469. |
| [7] | 沈睿, 郁鑫鑫, 李忠辉, 陈端阳, 赛青林, 谯兵, 周立坤, 董鑫, 齐红基, 陈堂胜. 氧化镓肖特基二极管硼离子注入终端技术研究[J]. 人工晶体学报, 2025, 54(3): 524-529. |
| [8] | 霍晓青, 张胜男, 周金杰, 王英民, 程红娟, 孙启升. 3~4英寸Fe掺高阻β-Ga2O3单晶的制备及其性能研究[J]. 人工晶体学报, 2025, 54(3): 407-413. |
| [9] | 陈旭阳, 李昊勃, 秦华垚, 许明耀, 卢寅梅, 何云斌. 新型亚氧化物化学气相传输工艺低成本生长β-Ga2O3厚膜[J]. 人工晶体学报, 2025, 54(3): 445-451. |
| [10] | 查显弧, 万玉喜, 张道华. β相氧化镓p型导电研究进展[J]. 人工晶体学报, 2025, 54(2): 177-189. |
| [11] | 王凯凯, 杜嵩, 徐豪, 龙浩. Ga2O3/NiOx肖特基势垒二极管器件的性能优化研究[J]. 人工晶体学报, 2025, 54(2): 337-347. |
| [12] | 杨晓龙, 唐慧丽, 张超逸, 孙鹏, 黄林, 陈龙, 徐军, 刘波. 光学浮区法生长Bi掺杂β-Ga2O3单晶及其光谱性质研究[J]. 人工晶体学报, 2025, 54(2): 202-211. |
| [13] | 黄东阳, 黄浩天, 潘明艳, 徐子骞, 贾宁, 齐红基. 垂直布里奇曼法生长氧化镓单晶及其性能表征[J]. 人工晶体学报, 2025, 54(2): 190-196. |
| [14] | 张子琦, 杨珍妮, 况思良, 魏盛龙, 徐文静, 陈端阳, 齐红基, 张洪良. MBE同质外延生长Sn掺杂β-Ga2O3(010)薄膜的电子输运性质研究[J]. 人工晶体学报, 2025, 54(2): 244-254. |
| [15] | 杜桐, 付俊杰, 王紫石, 狄静, 陶春雷, 张赫之, 张琦, 胡锡兵, 梁红伟. β-Ga2O3基MSM型日盲紫外光电探测器高温电流输运机制的研究[J]. 人工晶体学报, 2025, 54(2): 319-328. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS