
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (12): 2072-2082.DOI: 10.16553/j.cnki.issn1000-985x.2025.0151
卢嘉铮1(
), 胡润光2, 郑丽丽1(
), 张辉3, 胡动力2
收稿日期:2025-07-16
出版日期:2025-12-20
发布日期:2026-01-04
通信作者:
郑丽丽,博士,教授。E-mail:zhenglili@tsinghua.edu.cn
作者简介:卢嘉铮(1991—),男,四川省人,博士研究生。E-mail:lz_2020@foxmail.com
基金资助:
LU Jiazheng1(
), HU Runguang2, ZHENG Lili1(
), ZHANG Hui3, HU Dongli2
Received:2025-07-16
Online:2025-12-20
Published:2026-01-04
摘要: 本文针对物理气相传输(PVT)法生长8英寸(1英寸=2.54 cm)N型4H-SiC晶体过程中的6H-SiC多型夹杂控制问题,通过实验与数值模拟相结合的方法进行了研究。首先采用射频加热系统开展实验得到6H-SiC多型夹杂的出现时刻和位置,并对晶体生长全过程数值模拟,跟踪晶体生长界面边缘的温度及其附近碳过饱和比随时间的变化趋势,构建6H-SiC多型夹杂形成的临界条件判据。再基于该判据,对典型大尺寸多温区电阻加热式PVT生长系统,建立工艺参数与6H-SiC多型夹杂缺陷的相关关系。研究结果发现,对于给定的生长系统,增大上/下加热器功率比和氩气环境压力,有利于抑制6H-SiC多型夹杂形成。
中图分类号:
卢嘉铮, 胡润光, 郑丽丽, 张辉, 胡动力. 物理气相传输法生长大直径碳化硅单晶多型夹杂缺陷控制研究[J]. 人工晶体学报, 2025, 54(12): 2072-2082.
LU Jiazheng, HU Runguang, ZHENG Lili, ZHANG Hui, HU Dongli. Defect Control of Polytype Inclusion in Large-Diameter SiC Single Crystal Grown by PVT Method[J]. Journal of Synthetic Crystals, 2025, 54(12): 2072-2082.
| No. | Heating power | Growth duration/h | Average growth rate/(mm·h-1) | 6H-SiC polytype |
|---|---|---|---|---|
| 1 | P0 | 60 | 0.145 | None |
| 2 | 101.4%P0 | 110 | 0.158 | None |
| 3 | 102.8%P0 | 110 | 0.177 | Minor area |
| 4 | 106.8%P0 | 110 | 0.269 | Extensive area |
表1 实验加热功率、晶体生长时长、晶体平均生长速率与6H-SiC多型夹杂出现情况
Table 1 Heating power, crystal growth duration, average crystal growth rate and occurrence of 6H-SiC polytype inclusions of experiments
| No. | Heating power | Growth duration/h | Average growth rate/(mm·h-1) | 6H-SiC polytype |
|---|---|---|---|---|
| 1 | P0 | 60 | 0.145 | None |
| 2 | 101.4%P0 | 110 | 0.158 | None |
| 3 | 102.8%P0 | 110 | 0.177 | Minor area |
| 4 | 106.8%P0 | 110 | 0.269 | Extensive area |
图2 实验获得的晶体表面形貌及其6H-SiC多型夹杂情况:(a)P0,无6H-SiC多型;(b)101.4% P0,无6H-SiC多型;(c)102.8% P0,红框处的浅表层存在6H-SiC多型;(d)106.8% P0,红框处存在大面积贯穿6H-SiC多型
Fig.2 Experimental morphology of crystal surfaces and 6H-SiC polytype inclusions: (a) P0, 6H-SiC polytype-free; (b) 101.4% P0, 6H-SiC polytype-free; (c) 102.8% P0, 6H-SiC polytype present in an minor area on the shallow surface layer (red box); (d) 106.8% P0, 6H-SiC polytype inclusion developed throughout the crystal thickness in an extensive area (red circle)
图4 系统焦耳热分布情况。(a)系统整体和发热体的焦耳热分布;(b)发热体上焦耳热的轴向分布
Fig.4 Distribution of Joule heating system. (a) Distribution of Joule heating in the entire system and the susceptor; (b) axial distribution of Joule heating on the susceptor
图5 坩埚内部温度(左图)和气流速度(右图)在初、末时刻的分布情况,以及晶体生长界面形状。(a)P0/0 h; (b)101.4%P0/0 h;(c)102.8%P0/0 h;(d)106.8%P0/0 h;(e)P0/60 h;(f)101.4%P0/110 h;(g)102.8%P0/110 h;(h)106.8%P0/110 h
Fig.5 Distributions of temperature (left) and gas flow velocity (right) at initial and final stages in crucible, along with the shape of crystal growth interface. (a) P0/0 h; (b) 101.4%P0/0 h; (c) 102.8%P0/0 h; (d) 106.8%P0/0 h; (e) P0/60 h; (f) 101.4%P0/110 h; (g) 102.8%P0/110 h; (h) 106.8%P0/110 h
图6 晶体生长界面边缘温度T(a)及碳过饱和比值Seff(b)随时间的变化
Fig.6 Evolution of temperature T (a) and carbon supersaturation ratio Seff (b) at the crystal growth interface edge over time
图7 晶体生长界面边缘4H-SiC二维成核能(a)、6H-SiC二维成核能(b)及二者差值(c)随时间的变化趋势
Fig.7 Evolution of 4H-SiC 2D nucleation energy (a), 6H-SiC 2D nucleation energy (b), and the difference between them (c) over time at the crystal growth interface edge
图8 温度-碳过饱和比值(T-Seff)过程图。黑点无6H-SiC多型夹杂,红点有6H-SiC多型夹杂。红色虚线是4H-SiC向 6H-SiC转变的边界,等值线是6H-SiC与4H-SiC二维成核能的差值(单位:eV)
Fig.8 Temperature-carbon supersaturation ratio (T-Seff) process map. Black dots indicate no 6H-SiC polytype inclusion; red dots indicate presence of 6H-SiC polytype inclusion. The red dashed line is the boundary for the 4H-SiC to 6H-SiC transition; the contour lines represent the 2D nucleation energy difference between 6H-SiC and 4H-SiC (unit: eV)
图9 温度-晶体生长速率(T-Gcryst)过程图。黑点无6H-SiC多型夹杂,红点有6H-SiC多型夹杂。红色虚线是4H-SiC向 6H-SiC转变的边界,等值线是6H-SiC与4H-SiC二维成核能的差值(单位:eV)
Fig.9 Temperature-crystal growth rate (T-Gcryst) process map. Black dots indicate no 6H-SiC polytype inclusion; red dots indicate presence of 6H-SiC polytype inclusion. The red dashed line is the boundary for the 4H-SiC to 6H-SiC transition; the contour lines represent the 2D nucleation energy difference between 6H-SiC and 4H-SiC (units: eV)
图11 上/下加热器功率比与6H-SiC多型夹杂缺陷关系。(a)温度-碳过饱和比值;(b)温度-晶体生长速率过程图
Fig.11 Relationship between upper/lower heater power ratio and 6H-SiC polytype inclusion defects. (a) Temperature-carbon supersaturation ratio process map; (b) temperature-crystal growth rate process map
图12 氩气环境压力与6H-SiC多型夹杂缺陷关系。(a)温度-碳过饱和比值;(b)温度-晶体生长速率过程图
Fig.12 Relationship between Ar pressure and 6H-SiC polytype inclusion defects. (a) Temperature-carbon supersaturation ratio process map; (b) temperature-crystal growth rate process map
| [1] | RAMSDELL L S. Studies on silicon carbide[J]. American Mineralogist, 1954, 32: 64-82. |
| [2] | BURTON W K, CABRERA N, FRANK F C. The growth of crystals and the equilibrium structure of their surfaces[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1951, 243(866): 299-358. |
| [3] | TAIROV Y M, TSVETKOV V F. Progress in controlling the growth of polytypic crystals[J]. Progress in Crystal Growth and Characterization, 1983, 7(1/2/3/4): 111-162. |
| [4] | FISSEL A. Thermodynamic considerations of the epitaxial growth of SiC polytypes[J]. Journal of Crystal Growth, 2000, 212(3/4): 438-450. |
| [5] | TSAVDARIS N, ARIYAWONG K, SARIGIANNIDOU E, et al. Interface shape: a possible cause of polytypes de-stabilization during seeded sublimation growth of 15R-SiC[J]. Materials Science Forum, 2014, 806: 61-64. |
| [6] | TSAVDARIS N, ARIYAWONG K, DEDULLE J M, et al. Macroscopic approach to the nucleation and propagation of foreign polytype inclusions during seeded sublimation growth of silicon carbide[J]. Crystal Growth & Design, 2015, 15(1): 156-163. |
| [7] | 王 宇, 顾 鹏, 付 君, 等. PVT法生长4H-SiC晶体及多型夹杂缺陷研究进展[J]. 人工晶体学报, 2022, 51(12): 2137-2152. |
| WANG Y, GU P, FU J, et al. Research progress on the growth of 4H-SiC crystal by PVT method and the defect of polytype inclusions[J]. Journal of Synthetic Crystals, 2022, 51(12): 2137-2152 (in Chinese). | |
| [8] | SHIRAMOMO T, GAO B, MERCIER F, et al. Thermodynamical analysis of polytype stability during PVT growth of SiC using 2D nucleation theory[J]. Journal of Crystal Growth, 2012, 352(1): 177-180. |
| [9] | KAKIMOTO K, GAO B, SHIRAMOMO T, et al. Thermodynamic analysis of SiC polytype growth by physical vapor transport method[J]. Journal of Crystal Growth, 2011, 324(1): 78-81. |
| [10] | SHIRAMOMO T, GAO B, MERCIER F, et al. Study of the effect of doped impurities on polytype stability during PVT growth of SiC using 2D nucleation theory[J]. Journal of Crystal Growth, 2014, 385: 95-99. |
| [11] | XU B J, CUI H, CHEN P Y, et al. Effects of the thermal field on the diameter enlargement of 200 mm SiC by PVT method[J]. CrystEngComm, 2025, 27(9): 1315-1324. |
| [12] | FU Z X, YANG X L, CHEN X F, et al. Distribution of extrinsic Frank stacking faults in 4H-SiC single crystals: relationships with temperature field and polytype inclusions[J]. Vacuum, 2025, 241: 114680. |
| [13] | CHEN Q S, ZHANG H, PRASAD V, et al. Modeling of heat transfer and kinetics of physical vapor transport growth of silicon carbide crystals[J]. Journal of Heat Transfer, 2001, 123(6): 1098-1109. |
| [14] | CHEN Q S, ZHANG H, MA R H, et al. Modeling of transport processes and kinetics of silicon carbide bulk growth[J]. Journal of Crystal Growth, 2001, 225(2/3/4): 299-306. |
| [15] | LILOV S K. Study of the equilibrium processes in the gas phase during silicon carbide sublimation[J]. Materials Science and Engineering: B, 1993, 21(1): 65-69. |
| [16] | MARKOV I, KAISCHEW R. Influence of the supersaturation on the mode of thin film growth[J]. Kristall und Technik, 1976, 11(7): 685-697. |
| [17] | MA R H, CHEN Q S, ZHANG H, et al. Modeling of silicon carbide crystal growth by physical vapor transport method[J]. Journal of Crystal Growth, 2000, 211(1/2/3/4): 352-359. |
| [18] | 卢嘉铮, 张 辉, 郑丽丽, 等. 大尺寸电阻加热式碳化硅晶体生长热场设计与优化[J]. 人工晶体学报, 2022, 51(3): 371-384. |
| LU J Z, ZHANG H, ZHENG L L, et al. Thermal field design and optimization of resistance heated large-size SiC crystal growth system[J]. Journal of Synthetic Crystals, 2022, 51(3): 371-384 (in Chinese). | |
| [19] | 卢嘉铮, 张 辉, 郑丽丽, 等. 大尺寸碳化硅晶体生长热-质输运过程建模及数值仿真[J]. 人工晶体学报, 2023, 52(4): 550-561. |
| LU J Z, ZHANG H, ZHENG L L, et al. Modeling and numerical simulation of heat-mass transport process for large-size silicon carbide crystal growth[J]. Journal of Synthetic Crystals, 2023, 52(4): 550-561 (in Chinese). | |
| [20] | CHENG T B, FANG D N, YANG Y Z. A temperature-dependent surface free energy model for solid single crystals[J]. Applied Surface Science, 2017, 393: 364-368. |
| [21] | ARIYAWONG K. Process modeling for the growth of SiC using PVT and TSSG methods[D]. Grenoble: Uni-versité Grenoble Alpes, 2015. |
| [22] | WELLMANN P J, BICKERMANN M, HOFMANN D, et al. In situ visualization and analysis of silicon carbide physical vapor transport growth using digital X-ray imaging[J]. Journal of Crystal Growth, 2000, 216(1/2/3/4): 263-272. |
| [23] | ARZIG M, KÜNECKE U, SALAMON M, et al. Influence of the growth conditions on the formation of macro-steps on the growth interface of SiC-crystals[J]. Journal of Crystal Growth, 2021, 576: 126361. |
| [1] | 李晓川, 马三宝, 周锋子, 任永鹏, 马武祥, 梅昊天. 重掺锑直拉硅单晶中管道问题的数值模拟[J]. 人工晶体学报, 2025, 54(9): 1534-1546. |
| [2] | 李建铖, 钟泽琪, 王军磊, 李早阳, 文勇, 王磊, 刘立军. 直拉法单晶硅生长的氧含量控制研究[J]. 人工晶体学报, 2025, 54(9): 1525-1533. |
| [3] | 刘首廷, 温旭杰, 韩文斌, 李陈哲, 宋伟, 崔建钢, 宋松, 李勇, 孙德辉, 刘宏. 2~3英寸掺镁近化学计量比钽酸锂晶体生长[J]. 人工晶体学报, 2025, 54(8): 1396-1402. |
| [4] | 王斌, 王晓莉, 侯越云, 刘娇, 刘珊. 紫外氟化钙晶体的生长技术[J]. 人工晶体学报, 2025, 54(8): 1369-1378. |
| [5] | 徐庄婕, 巴延双, 习鹤, 白福慧, 陈大正, 朱卫东, 张春福. 高质量钙钛矿单晶生长及其X射线探测性能表征[J]. 人工晶体学报, 2025, 54(7): 1229-1237. |
| [6] | 马文君, 张国栋, 孙雪, 刘宏杰, 刘嘉欣, 陶绪堂. 卤化物钙钛矿半导体单晶及核辐射探测器研究进展[J]. 人工晶体学报, 2025, 54(7): 1091-1099. |
| [7] | 祁超, 李登辇, 李早阳, 杨垚, 钟泽琪, 刘立军. 热屏影响下直拉法单晶硅生长能耗及传热路径研究[J]. 人工晶体学报, 2025, 54(6): 949-959. |
| [8] | 朱丽涛, 刘磊, 原帅, 周声浪, 张华利, 汪晨, 高宇, 曹建伟, 余学功, 杨德仁. 钢缆直径对大尺寸直拉单晶硅生长稳定性的影响[J]. 人工晶体学报, 2025, 54(6): 942-948. |
| [9] | 陈子航, 王晓丹, 刘坚, 刘鹏, 徐晓东, 徐军. 微下拉法Er∶CNGG晶体的生长及光谱性能研究[J]. 人工晶体学报, 2025, 54(6): 935-941. |
| [10] | 杨文文, 卢伟, 谢辉, 刘刚, 吕鑫雨, 摆易寒, 李晨慧, 潘教青, 赵有文, 沈桂英. 低位错6英寸锑化镓单晶生长与性能研究[J]. 人工晶体学报, 2025, 54(5): 784-792. |
| [11] | 于丰, 郑强, 齐婷玉, 张郁柏, 马亚丽, 贾松岩, 李雪. 白云石精制液可控制备高长径比碳酸钙晶须的研究[J]. 人工晶体学报, 2025, 54(5): 898-908. |
| [12] | 蒋先龙, 郑玮涛, 朱允中. 原位诊断铌酸锂晶体生长界面的翻转现象[J]. 人工晶体学报, 2025, 54(4): 533-542. |
| [13] | 齐占国, 王守志, 李秋波, 王忠新, 邵慧慧, 刘磊, 王国栋, 孙德福, 于汇东, 蒋铠泽, 张爽, 陈秀芳, 徐现刚, 张雷. 4英寸高质量GaN单晶衬底制备[J]. 人工晶体学报, 2025, 54(4): 717-720. |
| [14] | 朱兴杰, 章平, 左敦稳. 残余应力及电场对4H-SiC表面压痕硬度的影响[J]. 人工晶体学报, 2025, 54(4): 560-568. |
| [15] | 姜博文, 纪为国, 张璐, 范骐鸣, 潘明艳, 黄浩天, 齐红基. 导模法生长β-Ga2O3晶体流场对称性研究[J]. 人工晶体学报, 2025, 54(3): 378-385. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS