
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (12): 2083-2100.DOI: 10.16553/j.cnki.issn1000-985x.2025.0109
许彬杰1,2(
), 陈鹏阳1,2(
), 卢圣瓯1,2, 宣玲玲1,2, 王安琦1,2, 王帆1,2, 皮孝东1,2(
), 杨德仁1,2, 韩学峰1,2(
)
收稿日期:2025-05-22
出版日期:2025-12-20
发布日期:2026-01-04
通信作者:
皮孝东,博士,教授。E-mail:xdpi@zju.edu.cn;韩学峰,博士,研究员。E-mail:xuefenghan@zju.edu.cn
作者简介:许彬杰(1990—),男,浙江省人,博士。E-mail:xubinjie@zju.edu.cn基金资助:
XU Binjie1,2(
), CHEN Pengyang1,2(
), LU Sheng’ou1,2, XUAN Lingling1,2, WANG Anqi1,2, WANG Fan1,2, PI Xiaodong1,2(
), YANG Deren1,2, HAN Xuefeng1,2(
)
Received:2025-05-22
Online:2025-12-20
Published:2026-01-04
摘要: 断裂应力是制约物理气相传输(PVT)法制备碳化硅(SiC)单晶直径突破200 mm的关键。本研究通过对比计算4°离轴与正轴生长条件下的断裂应力,发现两者的断裂应力行为高度相似:基平面滑移对断裂应力的影响在两种生长条件下可忽略不计,而棱柱面滑移的影响几乎完全相同。此外,研究阐明了温度梯度对断裂应力的影响机制,证实了高温条件下断裂应力几乎全部由径向温度梯度主导,轴向温度梯度的贡献可忽略不计。通过模拟晶体形貌随时间的演化过程及晶体凸度与直径的变化,进一步揭示了断裂应力大小与径向温度梯度之间的关联规律。本研究为理解断裂应力与温度梯度的内在关系提供了新的见解,对预防PVT法生长过程中的SiC晶体断裂具有指导意义。
中图分类号:
许彬杰, 陈鹏阳, 卢圣瓯, 宣玲玲, 王安琦, 王帆, 皮孝东, 杨德仁, 韩学峰. 温度梯度对PVT法生长大尺寸SiC断裂应力的影响[J]. 人工晶体学报, 2025, 54(12): 2083-2100.
XU Binjie, CHEN Pengyang, LU Sheng’ou, XUAN Lingling, WANG Anqi, WANG Fan, PI Xiaodong, YANG Deren, HAN Xuefeng. Effects of the Temperature Gradient on the Fracture Stress of Large-Sized SiC Grown by PVT Method[J]. Journal of Synthetic Crystals, 2025, 54(12): 2083-2100.
图1 (a)坩埚3D全局模型核心部分示意图;(b)3D热应力计算的网格结构;(c)从2D轴对称温度分布到3D温度分布转换示意图
Fig.1 (a) Schematic of the core section for the 3D global model of the crucible; (b) mesh structure for the 3D thermal stress calculation; (c) schematic diagram of the transformation from 2D temperature distribution to 3D temperature distribution
图2 左半部分为PVT法生长SiC的物理模型;右半部分为计算模型的网格划分,其中放大视图详细呈现了动态网格边界条件的设置情况其中Pi(s)*和Pi(p)*分别表示各气相组分在籽晶和粉料表面的饱和平衡分压,i表示气相组分Si、Si2C和SiC2
Fig.2 Left half: physical model of SiC PVT growth; right half: meshing of the computational model, with the enlarged view showing the dynamic mesh boundary conditions conditions, here, Pi(s)* and Pi(p)* represent the saturated equilibrium pressures of each gas-phase component at the seed crystal and powder source surfaces, respectively, where i denotes the gas-phase components Si, Si2C, and SiC2
图3 (a)SiC的六方单位晶胞基平面(蓝色)和棱柱面(黄色)滑移的示意图,其中 a 表示BPD滑移方向的单位矢量, b 和 c 分别表示棱柱面和基平面的单位法向量;(b)SiC六方晶系的基平面
Fig.3 (a) Hexagonal unit cell of SiC with schematic diagram of basal (blue) and prismatic (yellow) plane slips, where a represents the unit vectors of the slip direction of BPDs, b and c represent the unit normal vectors of the prismatic plane and basal planes, respectively; (b) basal plane of the hexagonal crystal system of SiC
| Vector | On-axis | 4° off-axis |
|---|---|---|
表1 笛卡尔坐标系下正轴与4°离轴生长条件下不同滑移系的滑移方向单位矢量及滑移面法向单位矢量
Table 1 Unit vectors of the slip direction and the unit normal vectors of the slip plane for different slip systems under on-axis and 4° off-axis growth conditions in the Cartesian coordinate system
| Vector | On-axis | 4° off-axis |
|---|---|---|
| Slip system | |||
|---|---|---|---|
| Basal plane | |||
| Prismatic plane | |||
表2 正轴生长条件下笛卡尔坐标系中的基平面与棱柱面滑移系
Table 2 Slip systems of basal and prismatic plane slips in the Cartesian coordinate system under on-axis growth
| Slip system | |||
|---|---|---|---|
| Basal plane | |||
| Prismatic plane | |||
| Basal plane | |||
|---|---|---|---|
| Prismatic plane | |||
表3 正轴生长条件下笛卡尔坐标系中的基平面滑移和棱柱面滑移的RSS与应力张量之间的线性关系
Table 3 Linear relationship between RSS and the stress tensors in the Cartesian coordinate system for basal plane and prismatic plane slips under on-axis growth
| Basal plane | |||
|---|---|---|---|
| Prismatic plane | |||
| Basal plane | |||
|---|---|---|---|
| Prismatic plane | |||
表4 正轴生长条件下笛卡尔坐标系中塑性应变张量与基平面滑移和棱柱面滑移中的塑性应变之间的线性关系
Table 4 Linear relationship between the plastic strain tensors in the Cartesian coordinate system and the plastic strains in each slip system for basal and prismatic plane slips under on-axis growth
| Basal plane | |||
|---|---|---|---|
| Prismatic plane | |||
图4 离轴生长的4H-SiC晶体及晶圆的示意图。(a)SiC晶体侧视图;(b)SiC晶圆俯视图;(c)SiC晶圆侧视图;(d)带离轴角的晶体坐标系(彩色)与笛卡尔坐标系(虚线);(e)带离轴角的圆柱坐标系
Fig.4 Schematic diagrams of a 4H-SiC crystal and wafer under off-axis grown. (a) Side view of the SiC crystal; (b) top view of the SiC wafer; (c) side view of the SiC wafer; (d) crystal coordinate system coordinate system (colored) with an off-angle and the Cartesian coordinate system (dashed line); (e) cylindrical coordinate with an off-angle
| Slip System | |||
|---|---|---|---|
| Basal plane | |||
| Prismatic plane | |||
表5 4°离轴生长条件下笛卡尔坐标系中的基平面与棱柱面滑移系
Table 5 Slip systems of basal and prismatic plane slips in the Cartesian coordinate system under 4° off-axis growth
| Slip System | |||
|---|---|---|---|
| Basal plane | |||
| Prismatic plane | |||
| Basal plane | ||||||
|---|---|---|---|---|---|---|
| Prismatic plane | ||||||
表6 4°离轴生长条件下基平面滑移和棱柱面滑移的RSS与应力张量之间的线性关系
Table 6 Linear relationship between RSS and the stress tensors in the Cartesian coordinate system for basal plane and prismatic plane slips under 4° off-axis growth
| Basal plane | ||||||
|---|---|---|---|---|---|---|
| Prismatic plane | ||||||
| Basal plane | |||
|---|---|---|---|
| Prismatic plane | |||
表7 4°离轴生长条件下塑性应变张量与基平面滑移和棱柱面滑移中的塑性应变之间的线性关系
Table 7 Linear relationship between the plastic strain tensors in the Cartesian coordinate system and the plastic strains in each slip system for basal and prismatic plane slips under 4° off-axis growth
| Basal plane | |||
|---|---|---|---|
| Prismatic plane | |||
图5 冷却时间为0和480min时SiC晶体在正轴和4°离轴生长下的温度,以及σφφ的弹性分量σφφe的分布情况
Fig.5 Temperature profile and distribution of the elastic component of σφφ (σφφe) of SiC crystal under on-axis and 4° off-axis growth for cooling time of 0 and 480 min
图6 (a)~(c)正轴生长条件下基平面滑移系 α1、α2和α3的RSS分布半剖面3D视图,剖切平面分别为[11ˉ00]、[01ˉ10]、[101ˉ0]晶面。其中,未显示的另一半剖面与当前展示的半剖面沿各自剖切平面对称分布;(d)~(f)4°离轴生长条件下基平面滑移系α1、α2和α3的RSS分布3D视图;(g)~(i)正轴生长条件下棱柱面滑移系α1、α2和α3的RSS分布3D视图,三者之间呈120°旋转对称;(j)~(l)4°离轴生长条件下棱柱面滑移系 α1、α2和α3的RSS分布3D视图,三者之间也接近呈120°旋转对称
Fig.6 (a)~(c) Half-sectional 3D view of the RSS distributions in the basal plane slip systems α1, α2, and α3 under on-axis growth, with section planes taken as [11ˉ00], [01ˉ10], [101ˉ0] crystallographic planes, respectively. The non-displayed half-sections are symmetrically distributed with respect to the displayed half-sections along their respective section planes; (d)~(f) 3D view of the RSS distributions in the basal plane slip systems α1, α2, and α3, respectively, under 4° off-axis growth; (g)~(i) 3D view of the RSS distributions in the prismatic plane slip systems α1, α2, and α3, respectively, under on-axis growth, exhibiting perfect 120° rotational symmetry among the 3 systems; (j)~(l) 3D view of the RSS distributions in the prismatic plane slip systems α1, α2, and α3, respectively, under 4° off-axis growth, maintaining approximate 120° rotational symmetry among the 3 systems
图7 (a)~(c)正轴生长条件下基平面滑移系α1、α2和α3分别导致的塑性应变分布半剖面3D视图,剖切平面分别为[11ˉ00]、[01ˉ10]、[101ˉ0]晶面,其中,未显示的另一半剖面与当前展示的半剖面沿各自剖切平面对称分布;(d)~(f)4°离轴生长条件下基平面滑移系α1、α2和α3分别导致的塑性应变分布3D视图;(g)~(i)正轴生长条件下棱柱面滑移系α1、α2和α3分别导致的塑性应变分布3D视图,三者之间呈120°旋转对称;(j)~(l)4°离轴生长条件下棱柱面滑移系α1、α2和α3分别导致的塑性应变分布3D视图,三者之间也接近呈120°旋转对称
Fig.7 (a)~(c) Half-sectional 3D view of the plastic strain distributions caused by the basal plane slip systems α1, α2, and α3 under on-axis growth, with section planes taken as [11ˉ00], [01ˉ10], [101ˉ0] crystallographic planes, respectively, the non-displayed half-sections are symmetrically distributed with respect to the displayed half-sections along their respective section planes; (d)~(f) 3D view of the plastic strain distributions caused by the basal plane slip systems α1, α2, and α3, respectively, under 4° off-axis growth; (g)~(i) 3D view of the plastic strain distributions caused by the prismatic plane slip systems α1, α2, and α3, respectively, under on-axis growth, exhibiting perfect 120° rotational symmetry among the 3 systems; (j)~(l) 3D view of the plastic strain distributions caused by the prismatic plane slip systems α1, α2, and α3, respectively, under 4° off-axis growth, maintaining approximate 120° rotational symmetry among the 3 systems
图8 在冷却480 min后σφφ分布的3D视图,考虑了由基平面滑移(a)、(b)及棱柱面滑移(c)、(d)引起的塑性应变。其中(a)和(c)是在正轴生长条件下计算得到,(b)和(d)是在4°离轴生长条件下计算得到
Fig.8 3D view of the σφφ distribution after 480 min of cooling, accounting for the plastic strains due to basal plane slips (a), (b), and prismatic plane slips (c), (d). Where (a) and (c) are calculated under on-axis growth, and (b) and (d) are calculated under 4° off-axis growth
图10 (a)凸度变化及径向温度分布变化的示意图;(b)不同凸度下籽晶背面的径向温度分布曲线;(c)为了便于对比,通过减去100 mm处的温度值(T100)将径向温度分布曲线归一化;(d)不同凸度下棱柱面滑移系最大RSS随冷却时间的演变;(e)不同凸度下籽晶背面边缘σφφe随冷却时间的变化,插图显示了提取σφφe值的位置;(f)高温生长过程中不同凸度下的最大RSS,分别考虑了轴向应变(3D)和忽略轴向应变(2D平面模型)的计算结果,以及两者的比值;(g)~(i)凸度为0、8和16 mm时12σrr-σφφ的分布情况,该参数表征了高温条件下最大RSS值的径向截面分布特征
Fig.10 (a) Schematic diagram illustrating the variation in convexity and the radial temperature distribution; (b) radial temperature distribution curves on the seed surface for different convexities; (c) radial temperature distribution curves normalized by subtracting the values at the 100 mm radius (T100) for easier visual comparison; (d) evolution of the maximum RSS in the prismatic plane slip systems with cooling time for different convexities; (e) evolution of σφφe at the periphery of the seed surface with cooling time for different convexities, the inset shows the point where the σφφe value is extracted; (f) maximum RSS during high temperature growth for different convexities, calculated by considering axial strain (3D) and neglecting axial strain (2D-plane), along with the ratio of the two; (g)~(i) distributions of 12σrr-σφφ, which represent the radial cross-section of the maximum RSS value at high temperature, for convexities of 0, 8, and 16 mm, respectively
图11 (a)晶体凸度为0时的直径变化与径向温度分布示意图;(b)不同直径条件下籽晶背面的径向温度分布曲线;(c)高温生长过程中不同直径对应的最大RSS值,分别考虑轴向应变(3D模型)和忽略轴向应变(2D平面模型)计算获得,以及两种计算结果的比值
Fig.11 (a) Schematic diagram illustrating the variation in diameter and the radial temperature distribution, with the crystal convexity maintained to be 0; (b) radial temperature distribution curves on the seed surface for different diameters; (c) maximum RSS during high temperature growth for different diameters, calculated by considering axial strain (3D) and neglecting axial strain (2D-plane), along with the ratio of the two
图12 (a)不同直径条件下棱柱面滑移系中最大RSS随冷却时间的演化规律;(b)不同直径条件下籽晶背面边缘处σφφe随冷却时间的演化曲线,插图展示了放大的冷却400 min后的数据点
Fig.12 (a) Evolution of the maximum RSS in the prismatic plane slip systems with cooling time for different diameters; (b) evolution of σφφe at the periphery of the seed surface with cooling time for different diameters, the inset shows an enlargement of the data points after 400 min of cooling
图13 晶体生长过程中界面形貌演化、网格划分及表征棱柱面滑移系最大RSS径向截面分布的12σrr-σφφ的变化
Fig.13 Evolution of the crystal interface, crystal meshing, and 12σrr-σφφ, which represent the radial cross-section of the maximum RSS in the prismatic plane slip systems, during crystal growth
图14 (a)不同生长时间下籽晶背面的径向温度分布曲线;(b)生长过程中最大RSS的变化(分别考虑轴向应变的3D模型和忽略轴向应变的2D平面模型计算获得,并计算了两者的比值);(c)生长过程中籽晶背面边缘处σφφe的演化曲线
Fig.14 (a) Radial temperature distribution curves on the seed surface for different growth time; (b) evolution of the maximum RSS during growth time, calculated by considering axial strain (3D) and neglecting axial strain (2D-plane), along with the ratio of the two; (c) evolution of σφφe at the periphery of the seed surface during growth time
| [1] | BALIGA B J. Power semiconductor device figure of merit for high-frequency applications[J]. IEEE Electron Device Letters, 1989, 10(10): 455-457. |
| [2] | SHE X, HUANG A Q, LUCÍA Ó, et al. Review of silicon carbide power devices and their applications[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8193-8205. |
| [3] | KIMOTO T. Bulk and epitaxial growth of silicon carbide[J]. Progress in Crystal Growth and Characterization of Materials, 2016, 62(2): 329-351. |
| [4] | WRIGHT N G, HORSFALL A B, VASSILEVSKI K. Prospects for SiC electronics and sensors[J]. Materials Today, 2008, 11(1/2): 16-21. |
| [5] | HUANG Y C, WANG R, QIAN Y X, et al. Theoretical study on the improvement of the doping efficiency of Al in 4H-SiC by co-doping group-IVB elements[J]. Chinese Physics B, 2022, 31(4): 046104. |
| [6] | TONG Z Y, BU M X, ZHANG Y Q, et al. Hyperdoped silicon: processing, properties, and devices[J]. Journal of Semiconductors, 2022, 43(9): 093101. |
| [7] | GENG W H, YANG G, ZHANG X Q, et al. Identification of subsurface damage of 4H-SiC wafers by combining photo-chemical etching and molten-alkali etching[J]. Journal of Semiconductors, 2022, 43(10): 102801. |
| [8] | YANG G, LUO H, LI J J, et al. Discrimination of dislocations in 4H-SiC by inclination angles of molten-alkali etched pits[J]. Journal of Semiconductors, 2022, 43(12): 122801. |
| [9] | YEO I G, YANG W S, PARK J H, et al. Two-inch a-plane (11-20) 6H-SiC crystal grown by using the PVT method from a small rectangular substrate[J]. Journal of the Korean Physical Society, 2011, 58(5(2)): 1541-1543. |
| [10] | AGARWAL A, DAS M, KRISHNASWAMI S, et al. SiC power devices-an overview[J]. MRS Online Proceedings Library, 2004, 815: 243. |
| [11] | LIU G Y, WU Y B, LI K J, et al. Development of high power SiC devices for rail traction power systems[J]. Journal of Crystal Growth, 2019, 507: 442-452. |
| [12] | HAN L B, LIANG L, KANG Y, et al. A review of SiC IGBT: models, fabrications, characteristics, and applications[J]. IEEE Transactions on Power Electronics, 2021, 36(2): 2080-2093. |
| [13] | CHANG K P, LIN P J, HORNG R H, et al. Growth characteristics of Fe-doped GaN epilayers on SiC (001) substrates and their effects on high breakdown voltage devices[J]. Materials Science in Semiconductor Processing, 2020, 119: 105228. |
| [14] | MUSOLINO M, XU X P, WANG H, et al. Paving the way toward the world’s first 200 mm SiC pilot line[J]. Materials Science in Semiconductor Processing, 2021, 135: 106088. |
| [15] | CHEN X F, YANG X L, XIE X J, et al. Research progress of large size SiC single crystal materials and devices[J]. Light, Science & Applications, 2023, 12(1): 28. |
| [16] | XIONG X X, YANG X L, CHEN X F, et al. Fabrication of 8-inch N-type 4H-SiC single crystal substrate with low dislocation density[J]. Journal of Inorganic Materials, 2023, 38(11): 1371. |
| [17] | HU G J, ZHONG G L, XIONG X X, et al. Improvement of the resistivity uniformity of 8-inch 4H-SiC wafers by optimizing the thermal field[J]. Vacuum, 2024, 222: 112961. |
| [18] | YANG X L, PAN Y N, GAO C, et al. Development of high quality 8 inch 4H-SiC substrates[J]. Solid State Phenomena, 2023, 344: 41-46. |
| [19] | XU B J, LU S O, CUI H, et al. The fracture stress of 8-inch silicon carbide during the PVT growth[J]. CrystEngComm, 2024, 26(39): 5550-5560. |
| [20] | GUO J Q, YANG Y, GOUE O Y, et al. Study on the role of thermal stress on prismatic slip of dislocations in 4H-SiC crystals grown by PVT method[J]. ECS Transactions, 2016, 75(12): 163-168. |
| [21] | GUO J Q, YANG Y, RAGHOTHAMACHAR B, et al. Prismatic slip in PVT-grown 4H-SiC crystals[J]. Journal of Electronic Materials, 2017, 46(4): 2040-2044. |
| [22] | LU S O, XU B J, WANG Y Z, et al. Distribution of basal plane dislocations in 4-degree off-axis 4H-SiC single crystals[J]. CrystEngComm, 2024, 26(16): 2143-2154. |
| [23] | XU B J, HAN X F, XU S C, et al. Optimization of the thermal field of 8-inch SiC crystal growth by PVT method with “3 separation heater method”[J]. Journal of Crystal Growth, 2023, 614: 127238. |
| [24] | LU S, XU B J, CHEN H Y, et al. Study of effects of varying parameters on the dislocation density in 200 mm SiC bulk growth[J]. Journal of Crystal Growth, 2024, 627: 127526. |
| [25] | LILOV S K. Study of the equilibrium processes in the gas phase during silicon carbide sublimation[J]. Materials Science and Engineering: B, 1993, 21(1): 65-69. |
| [26] | CHEN Q S, ZHANG H, PRASAD V, et al. Kinetics and modeling of sublimation growth of silicon carbide bulk crystal[J]. Journal of Crystal Growth, 2001, 224(1/2): 101-110. |
| [27] | CHEN Q S, ZHANG H, MA R H, et al. Modeling of transport processes and kinetics of silicon carbide bulk growth[J]. Journal of Crystal Growth, 2001, 225(2/3/4): 299-306. |
| [28] | XU B J, HAN X F, XU S C, et al. Numerical simulation of the transport of gas species in the PVT growth of single-crystal SiC[J]. Crystal Research and Technology, 2024, 59(7): 2300354. |
| [29] | SEGAL A S, VOROB’EV A N, KARPOV S Y, et al. Transport phenomena in sublimation growth of SiC bulk crystals[J]. Materials Science and Engineering: B, 1999, 61: 40-43. |
| [30] | MA R H, CHEN Q S, ZHANG H, et al. Modeling of silicon carbide crystal growth by physical vapor transport method[J]. Journal of Crystal Growth, 2000, 211(1/2/3/4): 352-359. |
| [31] | CHEN Q S, ZHANG H, PRASAD V. Heat transfer and kinetics of bulk growth of silicon carbide[J]. Journal of Crystal Growth, 2001, 230(1/2): 239-246. |
| [32] | PRASAD V, PENDURTI S. Hand book of crystal growth[M]// PRASAD V, PENDURTI S. Models for stress and dislocation generation in melt based compound crystal growth. Berlin, Heidelberg: Springer, 2010: 1335-1378. |
| [33] | ZHANG Z B, LU J, CHEN Q S, et al. Thermoelastic stresses in SiC single crystals grown by the physical vapor transport method[J]. Acta Mechanica Sinica, 2006, 22(1): 40-45. |
| [34] | GAO B, KAKIMOTO K. Three-dimensional modeling of basal plane dislocations in 4H-SiC single crystals grown by the physical vapor transport method[J]. Crystal Growth & Design, 2014, 14(3): 1272-1278. |
| [35] | ASARO R J. Crystal plasticity[J]. Journal of Applied Mechanics, 1983, 50(4b): 921-934. |
| [36] | MIYAZAKI N, SAKAGUCHI M. Three-dimensional dislocation density analysis of bulk semiconductor single crystal during CZ growth process[J]. Transactions of the Japan Society of Mechanical Engineers Series A, 2002, 68(665): 21-25. |
| [37] | MATSUNAMI H, KIMOTO T. Step-controlled epitaxial growth of SiC: high quality homoepitaxy[J]. Materials Science and Engineering: R: Reports, 1997, 20(3): 125-166. |
| [38] | LIU C J, CHEN X L, PENG T H, et al. Step flow and polytype transformation in growth of 4H-SiC crystals[J]. Journal of Crystal Growth, 2014, 394: 126-131. |
| [39] | HU S S, FANG S, LIU Y F, et al. Characterization of prismatic slip in SiC crystals by chemical etching method[J]. Materials Science Forum, 2023, 1089: 45-50. |
| [40] | LU S O, XU B J, XUAN L L, et al. Comparing basal and prismatic slips induced by thermal stresses in 4H-SiC crystals[J]. CrystEngComm, 2024, 26(44): 6244-6254. |
| [41] | LARA A, MUÑOZ A, CASTILLO-RODRÍGUEZ M, et al. Plastic behaviour of 4H-SiC single crystals deformed at temperatures between 800 and 1300 ℃[J]. Ceramics International, 2012, 38(2): 1381-1390. |
| [42] | HU S S, FANG H Y, LIU Y F, et al. Characterization of prismatic slip in PVT-grown AlN crystals[J]. Journal of Crystal Growth, 2022, 584: 126548. |
| [43] | GACHKEVICH A R, BOICHUK V Y. Thermal stress of a long cylinder heated by thermal radiation[J]. Soviet Applied Mechanics, 1987, 23(4): 328-332. |
| [44] | XU B J, CUI H, CHEN P Y, et al. Effects of the thermal field on the diameter enlargement of 200 mm SiC by PVT method[J]. CrystEngComm, 2025, 27(9): 1315-1324. |
| [45] | XU B J, UNIVERSITY Z, et al. Formation mechanisms of polytype-induced parallel slits in off-axis 4H-SiC crystals[J]. Crystal Growth & Design, 2025, 25(13): 5067-5074. |
| [46] | LU S O, XU B J, XUAN L L, et al. Numerical analysis on the thermal stress and dislocation density of a 300 mm SiC single crystal grown by the PVT method[J/OL]. CrystEngComm, 2025. (2025-07-31)[2025-09-01] . |
| [47] | 刘春俊. SiC单晶生长及缺陷研究[D]. 北京: 中国科学院大学, 2013. |
| LIU C J. Study on the growth and defects of SiC single crystals[D]. Beijing: University of Chinese Academy of Sciences, 2013 (in Chinese). | |
| [48] | 王波. SiC单晶生长、缺陷和导电性质研究[D]. 北京:中国科学院大学, 2014. |
| WANG B. Research on the growth, defects and electrical properties of SiC single crystals[D]. Beijing: University of Chinese Academy of Sciences, 2014 (in Chinese). |
| [1] | 李晓川, 马三宝, 周锋子, 任永鹏, 马武祥, 梅昊天. 重掺锑直拉硅单晶中管道问题的数值模拟[J]. 人工晶体学报, 2025, 54(9): 1534-1546. |
| [2] | 鹿润林, 郑丽丽, 张辉, 王人松, 胡动力. 热壁CVD制备工艺对8英寸SiC外延层厚度均匀性的影响[J]. 人工晶体学报, 2025, 54(9): 1509-1524. |
| [3] | 李建铖, 钟泽琪, 王军磊, 李早阳, 文勇, 王磊, 刘立军. 直拉法单晶硅生长的氧含量控制研究[J]. 人工晶体学报, 2025, 54(9): 1525-1533. |
| [4] | 黎诗锋, 杨金凤, 黄云棋, 张博, 刘子琦, 孙军, 潘世烈. 提拉法生长Ca(BO2)2晶体的包裹体缺陷研究[J]. 人工晶体学报, 2025, 54(9): 1501-1508. |
| [5] | 张淑艺, 刘庚灵, 王浩, 鲁跃, 姜显园, 李文焯, 刘聪, 吕英波, 武中臣, 刘董, 陈耀. 锡基钙钛矿晶体与器件的研究进展[J]. 人工晶体学报, 2025, 54(7): 1189-1207. |
| [6] | 祁超, 李登辇, 李早阳, 杨垚, 钟泽琪, 刘立军. 热屏影响下直拉法单晶硅生长能耗及传热路径研究[J]. 人工晶体学报, 2025, 54(6): 949-959. |
| [7] | 杨文文, 卢伟, 谢辉, 刘刚, 吕鑫雨, 摆易寒, 李晨慧, 潘教青, 赵有文, 沈桂英. 低位错6英寸锑化镓单晶生长与性能研究[J]. 人工晶体学报, 2025, 54(5): 784-792. |
| [8] | 杜青波, 杨亚鹏, 高旭东, 张智, 赵晓宇, 王惠琦, 刘轶尔, 李国强. 宽禁带半导体碳化硅基核辐射探测器研究进展[J]. 人工晶体学报, 2025, 54(5): 737-756. |
| [9] | 陈丹莹, 闫龙, 罗稼昊, 郑振宇, 姜勇, 张凯, 周宁, 廖宸梓, 郭世平. 垂直热壁CVD反应器中C/Si比对SiC高速同质外延生长的影响研究[J]. 人工晶体学报, 2025, 54(4): 569-580. |
| [10] | 姜博文, 纪为国, 张璐, 范骐鸣, 潘明艳, 黄浩天, 齐红基. 导模法生长β-Ga2O3晶体流场对称性研究[J]. 人工晶体学报, 2025, 54(3): 378-385. |
| [11] | 殷长帅, 孟标, 梁康, 崔翰文, 刘胜, 张召富. 采用不同辐射传热模型模拟氧化镓单晶生长热场的对比研究[J]. 人工晶体学报, 2025, 54(3): 386-395. |
| [12] | 卢正轩, 李忱, 周超, 卢远豪, 李浩潮, 柯善明, 唐叔贤. 立方碳化硅外延生长的研究进展[J]. 人工晶体学报, 2025, 54(12): 2037-2059. |
| [13] | 卢嘉铮, 胡润光, 郑丽丽, 张辉, 胡动力. 物理气相传输法生长大直径碳化硅单晶多型夹杂缺陷控制研究[J]. 人工晶体学报, 2025, 54(12): 2072-2082. |
| [14] | 林海鑫, 高德东, 王珊, 张振忠, 安燕, 张文永. 大尺寸直拉硅单晶生长的多物理场建模与优化[J]. 人工晶体学报, 2025, 54(1): 17-33. |
| [15] | 许万里, 甘云海, 李悦文, 李彬, 郑有炓, 张荣, 修向前. 高均匀性6英寸GaN厚膜的高速率HVPE生长研究[J]. 人工晶体学报, 2025, 54(1): 11-16. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS