欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2025, Vol. 54 ›› Issue (7): 1229-1237.DOI: 10.16553/j.cnki.issn1000-985x.2025.0073

• 研究论文 • 上一篇    下一篇

高质量钙钛矿单晶生长及其X射线探测性能表征

徐庄婕1,2(), 巴延双1,2, 习鹤2,3(), 白福慧1,2, 陈大正1,2, 朱卫东1,2, 张春福1,2()   

  1. 1.西安电子科技大学微电子学院,西安 710071
    2.西安电子科技大学宽禁带半导体器件与集成技术全国重点实验室,西安 710071
    3.西安电子科技大学先进材料与纳米科技学院,西安 710071
  • 收稿日期:2025-04-10 出版日期:2025-07-20 发布日期:2025-07-30
  • 通信作者: 习鹤,博士,副教授。E-mail:hxi@xidian.edu.cn;张春福,博士,教授。E-mail:cfzhang@xidian.edu.cn
  • 作者简介:徐庄婕(1999—),女,湖北省人,博士研究生。E-mail:V18271112132@163.com
    习 鹤,博士,西安电子科技大学副教授,博士生导师。依托西安电子科技大学宽禁带半导体国家工程研究中心,主要从事钙钛矿半导体材料与光电器件的研究,主持及参与了国家重点研发计划、国家自然科学基金、陕西省自然科学基础研究计划及企业横向课题等项目10余项,发表学术论文20余篇,申请国家发明专利10余项,出版中文专著2部并入选“十三五”国家重点图书出版规划项目,获陕西省研究生优秀教材一等奖。
    张春福,西安电子科技大学教授,博士生导师,国家级创新团队核心成员。主要从事新型宽禁带半导体光电转换器件及其工艺集成方面的研究,围绕新型宽禁带钙钛矿和超宽禁带氧化镓的低缺陷材料生长、高效能量转换和光电探测器件的构筑、材料和器件集成技术等基础性、共性科学问题开展研究工作。主持及参与基础加强项目、国家自然科学基金、国家重点研发计划等项目20余项,发表学术论文200余篇,授权国家发明专利60余项,出版著作4部。
  • 基金资助:
    国家重点研发计划(2022YFB3204101);国家重点研发计划(2021YFF0500504);中央高校基本科研业务费专项资金(YJSJ25013);国家自然科学基金(62274132);国家自然科学基金(61804113);国家重点研发计划(2022YFB3605402);陕西省自然科学基础研究计划(2021JC-24)

Growth and X-Ray Detection Properties of High-Quality Perovskite Single Crystals

XU Zhuangjie1,2(), BA Yanshuang1,2, XI He2,3(), BAI Fuhui1,2, CHEN Dazheng1,2, ZHU Weidong1,2, ZHANG Chunfu1,2()   

  1. 1.School of Microelectronics,Xidian University,Xi’an 710071,China
    2.State Key Laboratory of Wide-Bandgap Semiconductor Devices and Integrated Technology,School of Microelectronics,Xidian University,Xi’an 710071,China
    3.School of Advanced Materials and Nanotechnology,Xidian University,Xi’an 710071,China
  • Received:2025-04-10 Online:2025-07-20 Published:2025-07-30

摘要: 金属卤化物钙钛矿(MHPs)单晶因具有优异光电性能在辐射探测领域拥有广泛的应用前景,其生长过程中晶体内部及表面缺陷的抑制有望进一步提高半导体辐射探测器的性能。本文通过使用两亲性表面活性剂硫代甜菜碱10作为添加剂,采用逆温结晶法(ITC)制备高质量MAPbBr3单晶。对添加剂优化晶体生长机理进行了深入研究,结果表明磺添加剂分子在结晶控制和表面缺陷钝化的协同效应显著抑制了缺陷的形成,生长出的MAPbBr3单晶摇摆曲线的半峰全宽(FWHM)从0.071°降低到0.046°,长链烷基基团使晶体表面表现出优异的疏水性能,其表面接触角从84.04°增加到96.25°,表明了表面疏水性的显著提高。制备出了具有镍/金-镍/金环形对称电极结构的器件,其电阻率从2.08×107 Ω·cm提高至2.82×108 Ω·cm,载流子迁移率寿命积为1.81×10-2 cm2·V-1。此外,器件灵敏度可达1 450 μC·Gyair-1·cm-2,并能在1 000 s的测试期间保持良好的运行稳定性。

关键词: 钙钛矿单晶; 添加剂; X射线探测; 缺陷钝化; 晶体生长; 逆温结晶法

Abstract: Metal halide perovskites (MHPs) single crystals have potential applications in the field of radiation detection due to their excellent optoelectronic properties. Additionally, suppressing defects both in the bulk during single crystal growth and on the surface after growth is expected to further improve the performance of semiconductor radiation detectors. In this study, high-quality MAPbBr3 single crystals with dimensions exceeding 10 mm×10 mm were grown by inverse temperature crystallization (ITC) using the amphiphilic surfactant thiobetaine 10 as an additive. The mechanism of additive-optimized crystal growth was analyzed and characterized. The synergistic effect of sulfonic acid amphiphiles in crystallization control and defect passivation significantly suppressed defect formation. The full width at half maximum (FWHM) of the grown MAPbBr3 single crystals reduces from 0.071° to 0.046°, while the long-chained alkyl groups make the surface of the crystals exhibit excellent hydrophobicity, increasing the surface contact angle increases from 84.04° to 96.25°. These results demonstrate an overall improvement in MHP single crystal quality. A device with Ni/Au-Ni/Au ring-symmetric electrodes was prepared, and the device resistivity increases from 2.08×107 Ω·cm to 2.82×108 Ω·cm, with a carrier mobility lifetime product of 1.81×10-2 cm2·V-1. Furthermore, MAPbBr3 single crystals detector achieve an X-ray detection sensitivity of 1 459 μC·Gyair-1·cm-2 under 50 kV X-ray irradiation and maintain stable operation over a 1 000 s test period. This strategy advances the practical application of perovskite single crystals in X-ray detection. Moreover, our strategy contributes to further progress in the practical application of perovskite single crystals in the field of X-ray detection.

Key words: perovskite single crystal; additive; X-ray detection; defect passivation; crystal growth; inverse temperature crystallization

中图分类号: