欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2025, Vol. 54 ›› Issue (7): 1091-1099.DOI: 10.16553/j.cnki.issn1000-985x.2025.0107

• 综合评述 • 上一篇    下一篇

卤化物钙钛矿半导体单晶及核辐射探测器研究进展

马文君(), 张国栋(), 孙雪, 刘宏杰, 刘嘉欣, 陶绪堂   

  1. 山东大学晶体材料全国重点实验室,晶体材料研究院,济南 250100
  • 收稿日期:2025-05-20 出版日期:2025-07-20 发布日期:2025-07-30
  • 通信作者: 张国栋,博士,教授。E-mail:zgd@sdu.edu.cn
  • 作者简介:马文君(2002—),女,山东省人,硕士研究生。E-mail:202412866@mail.sdu.edu.cn
    张国栋,山东大学教授、博士生导师。《人工晶体学报》青年编委。长期围绕核辐射探测和红外探测用卤化物晶体开展单晶生长、性能表征及应用探索。承担了国家重点研发计划、国家自然科学基金、教育部联合基金、JKW领域基金等科研项目。入选2023年英国皇家化学会JMCC期刊“新锐科学家(Emerging Investigator)”,现任第七届中国物理学会固体缺陷专业委员会委员。以第一或通信作者在Nature Photonics、Advanced Materials、Angew Chem Int Ed、Advanced Functional Materials、SCIENCE CHINA Materials等期刊发表论文50余篇。
  • 基金资助:
    国家自然科学基金(62274103)

Recent Advances in Halide Perovskite Semiconductor Single Crystals for Radiation Detection Applications

MA Wenjun(), ZHANG Guodong(), SUN Xue, LIU Hongjie, LIU Jiaxin, TAO Xutang   

  1. Institute of Crystal Materials,State Key Laboratory of Crystal Materials,Shandong University,Jinan 250100,China
  • Received:2025-05-20 Online:2025-07-20 Published:2025-07-30

摘要: 卤化物钙钛矿晶体具有平均原子序数高、载流子迁移率寿命积(μτ)大、易大面积制备、材料体系丰富等优点,已成为一类极具应用前景的新型核辐射探测材料。本文综述了国内外钙钛矿半导体单晶的生长方法及辐射探测器的研究进展。大尺寸高质量单晶的可控生长是制备高性能探测器的关键,通过革新晶体生长技术,结合阴阳离子协同掺杂、添加剂辅助工程策略可以显著提升晶体的尺寸和电学性能;钙钛矿半导体单晶在光子计数X射线成像和γ射线能谱分辨中展现出钙钛矿薄膜无法比拟的优势,然而,在进一步提升晶体的本征质量、抑制离子迁移引发的器件稳定性问题,以及优化晶体与像素芯片键合工艺等环节仍面临诸多挑战。未来研究亟需深化晶体结构与性能关系的探索,优化生长工艺参数,创新探测器构型,从而推动卤化物钙钛矿晶体在核辐射探测领域的产业化进程。

关键词: 卤化物钙钛矿; 半导体单晶; X射线探测; γ射线探测; 晶体生长; 核辐射探测器

Abstract: Halide perovskite crystals have emerged as promising candidates for nuclear radiation detection due to their high average atomic numbers, large carrier mobility lifetime products (μτ), scalable large-area fabrication, and diverse material system. This review systematically examines the growth methods of perovskite semiconductor single crystals, as alongside recent advancements in radiation detector research. Controllable growth of large-size, high-quality single crystals is crucial for developing high-performance detectors. Through innovative crystal growth techniques combined with strategies such as cation-donor, anion-acceptor co-doping, and additive-assisted engineering, significant improvements in crystal dimensions and electrical performance acquired. Perovskite semiconductor single crystals offer unparalleled advantages in photon-counting X-ray imaging and γ-ray energy spectrum resolution that perovskite thin films cannot match. However, key challenges persist, including further improving the intrinsic quality of the crystals, addressing device stability issues caused by ion migration, and optimizing the bonding process between the crystals and pixel chips. Future research should focus on exploring the relationship between crystal structure and performance, optimizing growth process parameters, and innovating detector architectures to accelerate the industrialization of halide perovskite crystals in nuclear radiation detection applications.

Key words: halide perovskite; semiconductor single crystal; X-ray detection; γ-ray detection; crystal growth; radiation detector

中图分类号: