欢迎访问《人工晶体学报》官方网站,今天是 分享到:

人工晶体学报 ›› 2025, Vol. 54 ›› Issue (3): 524-529.DOI: 10.16553/j.cnki.issn1000-985x.2024.0287

• 器件制备 • 上一篇    下一篇

氧化镓肖特基二极管硼离子注入终端技术研究

沈睿1,2, 郁鑫鑫1, 李忠辉1,2, 陈端阳3,4, 赛青林3,4, 谯兵1, 周立坤1, 董鑫5, 齐红基3,4, 陈堂胜2   

  1. 1.南京电子器件研究所,中国电科碳基电子重点实验室,南京 210016;
    2.固态微波器件与电路全国重点实验室,南京 210016;
    3.中国科学院上海光学精密机械研究所,上海 201800;
    4.杭州富加镓业科技有限公司,杭州 311421;
    5.吉林大学电子科学与工程学院,集成光电子国家重点实验室,长春 130012
  • 收稿日期:2024-11-18 出版日期:2025-03-15 发布日期:2025-04-03
  • 通信作者: 郁鑫鑫,博士,高级工程师。E-mail:yuxx711@126.com; 李忠辉,博士,研究员级高工。E-mail:zhonghuili@126.com
  • 作者简介:沈 睿(1996—),男,江苏省人,博士研究生。E-mail:ruishen2017@163.com
  • 基金资助:
    国家重点研发计划(2022YFB3605504)

Investigation of Boron Implanted Terminations for β-Ga2O3 Schottky Barrier Diodes

SHEN Rui1,2, YU Xinxin1, LI Zhonghui1,2, CHEN Duanyang3,4, SAI Qingling3,4, QIAO Bing1, ZHOU Likun1, DONG Xin5, QI Hongji3,4, CHEN Tangsheng2   

  1. 1. CETC Key Laboratory of Carbon-based Electronics, Nanjing Electronic Devices Institute, Nanjing 210016, China;
    2. National Key Laboratory of Solid-State Microwave Devices and Circuits, Nanjing 210016, China;
    3. Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
    4. Fujia Gallium Technology Co. Ltd., Hangzhou 311421, China;
    5. State Key Laboratoy on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
  • Received:2024-11-18 Online:2025-03-15 Published:2025-04-03

摘要: β-Ga2O3具有禁带宽度大和击穿场强高等优异的物理特性,被认为是制作新一代大功率、高效率电力电子器件的理想半导体材料。然而,无终端的Ga2O3肖特基势垒二极管(SBD)容易在肖特基电极边缘产生高峰值电场,导致器件过早击穿,影响其耐压特性。因此,本文提出通过对器件肖特基金属边缘进行硼(B)离子选区注入来构建埋层高阻终端,从而调控电极边缘的电场分布,以达到提升击穿电压的效果。B离子注入的能量和剂量分别为60 keV和7×1014 cm-2,通过仿真估算注入深度约为200 nm。采用B离子注入终端后,Ga2O3 SBD器件的导通特性未发生明显变化,比导通电阻仍为2.5 mΩ·cm2左右,而击穿电压则从429 V大幅度提升至1 402 V,增幅达226%,对应的功率优值从74 MW/cm2提升至767 MW/cm2。通过仿真研究了器件电场分布,发现采用B注入终端后,肖特金属电极边缘的电场峰值得到显著抑制,且随着注入深度的增大而逐步下降。本工作为高性能Ga2O3功率器件终端结构的设计提供了新的研究思路。

关键词: β-Ga2O3, 肖特基二极管, 硼离子注入, 边缘终端, 击穿电压

Abstract: β-Ga2O3 is regarded as a promising semiconductor material for the next-generation high-power and high-efficiency power electronic devices for its exceptional physical properties such as wide bandgap and high breakdown electrical field. However, the Ga2O3 Schottky barrier diode (SBD) without terminations are prone to generate the peak electric fields at the edges of the Schottky electrodes, causing premature breakdown of the device, affecting its breakdown characteristics. To address this, a buried high-resistance termination achieved by selectively boron (B) ion implantation at the edge of the Schottky electrode is proposed to modulate the edge electric fields and improve the breakdown voltage. The B ions were implanted with an energy of 60 keV and a dose of 7×1014 cm-2. The implantation depth was evaluated as approximately 200 nm by simulations. With B ion implantation, the on-state characteristics of the Ga2O3 SBD are not changed and the specific on-resistance is still as low as 2.5 mΩ·cm2, whereas the breakdown voltage is significantly improved from 429 V to 1 402 V, which is 226% increased. The corresponding power figure of merit is improved from 74 MW/cm2 to 767 MW/cm2. The electric field simulations reveal that the peak electric field at the edge of the Schottky electrode is substantially suppressed with B implantation, and it decreases with the increase of the implantation depth. This work provides a new approach for the design of terminations for high-performance Ga2O3 power devices.

Key words: β-Ga2O3, SBD, B ion-implant, edge termination, breakdown voltage

中图分类号: