
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (7): 1091-1099.DOI: 10.16553/j.cnki.issn1000-985x.2025.0107
马文君(
), 张国栋(
), 孙雪, 刘宏杰, 刘嘉欣, 陶绪堂
收稿日期:2025-05-20
出版日期:2025-07-20
发布日期:2025-07-30
通信作者:
张国栋,博士,教授。E-mail:zgd@sdu.edu.cn
作者简介:马文君(2002—),女,山东省人,硕士研究生。E-mail:202412866@mail.sdu.edu.cn基金资助:
MA Wenjun(
), ZHANG Guodong(
), SUN Xue, LIU Hongjie, LIU Jiaxin, TAO Xutang
Received:2025-05-20
Online:2025-07-20
Published:2025-07-30
摘要: 卤化物钙钛矿晶体具有平均原子序数高、载流子迁移率寿命积(μτ)大、易大面积制备、材料体系丰富等优点,已成为一类极具应用前景的新型核辐射探测材料。本文综述了国内外钙钛矿半导体单晶的生长方法及辐射探测器的研究进展。大尺寸高质量单晶的可控生长是制备高性能探测器的关键,通过革新晶体生长技术,结合阴阳离子协同掺杂、添加剂辅助工程策略可以显著提升晶体的尺寸和电学性能;钙钛矿半导体单晶在光子计数X射线成像和γ射线能谱分辨中展现出钙钛矿薄膜无法比拟的优势,然而,在进一步提升晶体的本征质量、抑制离子迁移引发的器件稳定性问题,以及优化晶体与像素芯片键合工艺等环节仍面临诸多挑战。未来研究亟需深化晶体结构与性能关系的探索,优化生长工艺参数,创新探测器构型,从而推动卤化物钙钛矿晶体在核辐射探测领域的产业化进程。
中图分类号:
马文君, 张国栋, 孙雪, 刘宏杰, 刘嘉欣, 陶绪堂. 卤化物钙钛矿半导体单晶及核辐射探测器研究进展[J]. 人工晶体学报, 2025, 54(7): 1091-1099.
MA Wenjun, ZHANG Guodong, SUN Xue, LIU Hongjie, LIU Jiaxin, TAO Xutang. Recent Advances in Halide Perovskite Semiconductor Single Crystals for Radiation Detection Applications[J]. Journal of Synthetic Crystals, 2025, 54(7): 1091-1099.
图2 溶液法生长的钙钛矿晶体。(a)~(d)降温结晶法生长的钙钛矿晶体[4-6];(e)~(j)逆温结晶法生长的钙钛矿晶体[1,13-15]
Fig.2 Perovskite crystals grown by solution methods. (a)~(d) Perovskite crystals grown by solution temperature-lowering method[4-6]; (e)~(j) perovskite crystals grown by inverse temperature crystallization[1,13-15]
图3 改进技术生长大尺寸钙钛矿单晶[16,18-20]。(a)空间限域法生长厚度可调的单晶;(b)控温控速反溶剂扩散系统生长MAPbBr3单晶;(c)自供料生长MAPbI3单晶;(d)近平衡系统生长FAPbBr3单晶
Fig.3 Large perovskite single crystals growth by improved technologies[16,18-20]. (a) Space confinement crystallization for single crystals with adjustable thickness; (b) temperature and speed controlled antisolvent diffusion crystallization for MAPbBr3 single crystal; (c) steady self-supply solution crystallization for MAPbI3 single crystal; (d) close-to-equilibrium crystallization for FAPbBr3 single crystal
图5 垂直布里奇曼法生长的无机钙钛矿晶体[32,28,36]。(a)混卤CsPbBr3-n I n 钙钛矿晶体;(b)混卤Cs3Bi2I9-n Br n 钙钛矿晶体;(c)混合阳离子Cs1-m Rb m PbBr3单晶
Fig.5 Inorganic perovskite crystals grown by vertical Bridgman method[32,28,36]. (a) Mixed-halide CsPbBr3-n I nperovskite crystals; (b) mixed-halide Cs3Bi2I9-n Br n perovskite crystals; (c) mixed cation Cs1-m Rb m PbBr3 single crystals
图6 抑制钙钛矿离子迁移的方法[37-40]。(a)探测新型低维钙钛矿材料;(b)表面钝化;(c)施加反向偏压;(d)构建肖特基结形成势垒
Fig.6 Methods of restraining ion migration[37-40]. (a) Detecting novel low dimensional perovskite materials; (b) surface passivation; (c) applying reverse bias; (d) constructing the Schottky junction to form a barrier
| 材料 | 生长方法 | 电极材料与结构 | 载流子迁移率寿命积/(cm2·V-1) | 能量分辨率 |
|---|---|---|---|---|
| MAPbBr2.94Cl0.06 | 溶液法 | Ga-Au结构,保护环电极 | 1.8×10-2 | 6.5%@137Cs |
| MAPbI3 | 溶液法 | Ga/Pb-Au不对称结构 | 0.8×10-3 | 6.8%@57Co |
| FACsPbBr3 | 溶液法 | — | 2.2×10-3 | 2.9%@137Cs |
| FAPbI3 | 溶液法 | — | 1.2×10-1 | 35%@241Am |
| MAPbBr2.85Cl0.15 | 溶液法 | Cr-Cr平面对称结构 | — | 25%@137Cs |
| CsPbCl3 | 熔体法 | Ga-Au不对称结构 | 3.2×10-4 | 16%@57Co |
| CsPbBr3 | 熔体法 | Ga-Au不对称结构 | 1.34×10-3 | 3.8%@137Cs |
| CsPbBr3 | 熔体法 | Au-Au平面结构 | 8×10-3 | 1.4%@137Cs |
| CsPbBr3 | 熔体法 | Au-Au准半球形 | 8×10-3 | 1.6%@137Cs |
| CsPbBr3 | 熔体法 | Au-Au像素电极 | — | 1.8%@137Cs |
| CsPbBr3 | 熔体法 | Au-In不对称结构 | 1.7×10-2 | 2%@137Cs |
| CsPbBr3 | 熔体法 | EGaIn-In保护环电极 | — | 4.8%@57Co |
表1 钙钛矿单晶γ射线探测的能量分辨率
Table 1 Energy resolution of perovskite single crystals in γ-ray detection
| 材料 | 生长方法 | 电极材料与结构 | 载流子迁移率寿命积/(cm2·V-1) | 能量分辨率 |
|---|---|---|---|---|
| MAPbBr2.94Cl0.06 | 溶液法 | Ga-Au结构,保护环电极 | 1.8×10-2 | 6.5%@137Cs |
| MAPbI3 | 溶液法 | Ga/Pb-Au不对称结构 | 0.8×10-3 | 6.8%@57Co |
| FACsPbBr3 | 溶液法 | — | 2.2×10-3 | 2.9%@137Cs |
| FAPbI3 | 溶液法 | — | 1.2×10-1 | 35%@241Am |
| MAPbBr2.85Cl0.15 | 溶液法 | Cr-Cr平面对称结构 | — | 25%@137Cs |
| CsPbCl3 | 熔体法 | Ga-Au不对称结构 | 3.2×10-4 | 16%@57Co |
| CsPbBr3 | 熔体法 | Ga-Au不对称结构 | 1.34×10-3 | 3.8%@137Cs |
| CsPbBr3 | 熔体法 | Au-Au平面结构 | 8×10-3 | 1.4%@137Cs |
| CsPbBr3 | 熔体法 | Au-Au准半球形 | 8×10-3 | 1.6%@137Cs |
| CsPbBr3 | 熔体法 | Au-Au像素电极 | — | 1.8%@137Cs |
| CsPbBr3 | 熔体法 | Au-In不对称结构 | 1.7×10-2 | 2%@137Cs |
| CsPbBr3 | 熔体法 | EGaIn-In保护环电极 | — | 4.8%@57Co |
图7 γ射线探测的器件设计[40,48-49,52]。(a)电极结构;(b)电子和空穴传输层;(c)器件几何构型
Fig.7 Device design of γ-ray detection[40,48-49,52]. (a) Metal contacts; (b) electron and hole transport layers; (c) device geometry
| [1] | LIU Y C, ZHANG Y X, YANG Z, et al. Low-temperature-gradient crystallization for multi-inch high-quality perovskite single crystals for record performance photodetectors[J]. Materials Today, 2019, 22: 67-75. |
| [2] | SAIDAMINOV M I, ABDELHADY A L, MURALI B, et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization[J]. Nature Communications, 2015, 6: 7586. |
| [3] | SHI D, ADINOLFI V, COMIN R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J]. Science, 2015, 347(6221): 519-522. |
| [4] | DANG Y Y, LIU Y, SUN Y X, et al. Bulk crystal growth of hybrid perovskite material CH3NH3PbI3 [J]. CrystEngComm, 2015, 17(3): 665-670. |
| [5] | DANG Y Y, ZHOU Y A, LIU X L, et al. Formation of hybrid perovskite tin iodide single crystals by top-seeded solution growth[J]. Angewandte Chemie International Edition, 2016, 55(10): 3447-3450. |
| [6] | 周怡安. 甲胺基铅卤钙钛矿晶体的生长与性能研究[D]. 济南: 山东大学, 2018. |
| ZHOU Y A. Study on the growth and properties of methylammonium lead halide perovskite single crystal materials[D]. Jinan: Shandong University, 2018 (in Chinese). | |
| [7] | PENG J L, XIA C Q, XU Y L, et al. Crystallization of CsPbBr3 single crystals in water for X-ray detection[J]. Nature Communications, 2021, 12(1): 1531. |
| [8] | FAN Q S, XU H J, ZHU Z K, et al. 3D lead-free double perovskite via anchoring A-site cation for ultralow dose and stable X-ray detection[J]. Advanced Functional Materials, 2025: 2505546. |
| [9] | ZENG X, LIU Y, CHEN Y Y, et al. Achieving effective self-driven X-ray detection sensitivity via pyroelectric-photovoltaic coupling in a layered perovskite pyroelectric[J]. ACS Energy Letters, 2024, 9(2): 381-387. |
| [10] | JIANG W, DI H P, SUN H, et al. Role of DMSO concentration in the crystallization process of MAPbBr3 perovskite single crystal films[J]. Journal of Crystal Growth, 2020, 550: 125880. |
| [11] | MACULAN G, SHEIKH A D, ABDELHADY A L, et al. CH3NH3PbCl3 single crystals: inverse temperature crystallization and visible-blind UV-photodetector[J]. The Journal of Physical Chemistry Letters, 2015, 6(19): 3781-3786. |
| [12] | ZHUMEKENOV A A, SAIDAMINOV M, HAQUE A, et al. Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length[J]. ACS Energy Letters, 2016, 1(1): 32-37. |
| [13] | LIU Y C, YANG Z, CUI D, et al. Two-inch-sized perovskite CH3NH3PbX3 (X=Cl, Br, I) crystals: growth and characterization[J]. Advanced Materials, 2015, 27(35): 5176-5183. |
| [14] | LIU Y C, SUN J K, YANG Z, et al. 20-mm-large single-crystalline formamidinium-perovskite wafer for mass production of integrated photodetectors[J]. Advanced Optical Materials, 2016, 4(11): 1829-1837. |
| [15] | LIU Y C, ZHANG Y X, ZHU X J, et al. Inch-sized high-quality perovskite single crystals by suppressing phase segregation for light-powered integrated circuits[J]. Science Advances, 2021, 7(7): eabc8844. |
| [16] | CHEN Y X, GE Q Q, SHI Y, et al. General space-confined on-substrate fabrication of thickness-adjustable hybrid perovskite single-crystalline thin films[J]. Journal of the American Chemical Society, 2016, 138(50): 16196-16199. |
| [17] | ZHANG L L, LIU Y, YE X, et al. Exploring anisotropy on oriented wafers of MAPbBr3 crystals grown by controlled antisolvent diffusion[J]. Crystal Growth & Design, 2018, 18(11): 6652-6660. |
| [18] | ZHANG L L, CUI S Y, GUO Q, et al. Anisotropic performance of high-quality MAPbBr3 single-crystal wafers[J]. ACS Applied Materials & Interfaces, 2020, 12(46): 51616-51627. |
| [19] | WANG W Z, MENG H, QI H Z, et al. Electronic-grade high-quality perovskite single crystals by a steady self-supply solution growth for high-performance X-ray detectors[J]. Advanced Materials, 2020, 32(33): 2001540. |
| [20] | YIN H, LIAO M Q, SHI Y P, et al. Close-to-equilibrium crystallization for large-scale and high-quality perovskite single crystals[J]. Advanced Materials, 2025, 37(10): 2415957. |
| [21] | JAO M H, LU C F, TAI P Y, et al. Precise facet engineering of perovskite single crystals by ligand-mediated strategy[J]. Crystal Growth & Design, 2017, 17(11): 5945-5952. |
| [22] | WANG W J, CAI M L, WU G, et al. Facet control of the lead-free methylammonium bismuth iodide perovskite single crystals via ligand-mediated strategy[J]. Crystal Growth & Design, 2021, 21(10): 5840-5847. |
| [23] | FENG Y X, PAN L, WEI H T, et al. Low defects density CsPbBr3 single crystals grown by an additive assisted method for gamma-ray detection[J]. Journal of Materials Chemistry C, 2020, 8(33): 11360-11368. |
| [24] | MA L, YAN Z G, ZHOU X Y, et al. A polymer controlled nucleation route towards the generalized growth of organic-inorganic perovskite single crystals[J]. Nature Communications, 2021, 12(1): 2023. |
| [25] | STOUMPOS C C, MALLIAKAS C D, PETERS J A, et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection[J]. Crystal Growth & Design, 2013, 13(7): 2722-2727. |
| [26] | ZHANG P, ZHANG G D, LIU L, et al. Anisotropic optoelectronic properties of melt-grown bulk CsPbBr3 single crystal[J]. The Journal of Physical Chemistry Letters, 2018, 9(17): 5040-5046. |
| [27] | ZHANG P, SUN Q H, XU Y D, et al. Enhancing carrier transport properties of melt-grown CsPbBr3 single crystals by eliminating inclusions[J]. Crystal Growth & Design, 2020, 20(4): 2424-2431. |
| [28] | ZHANG P, HUA Y Q, XU Y D, et al. Ultrasensitive and robust 120 keV hard X-Ray imaging detector based on mixed-halide perovskite CsPbBr3- n I n single crystals[J]. Advanced Materials, 2022, 34(12): 2106562. |
| [29] | CHUNG D Y, LIN W W, UNAL M, et al. Growth of high-purity CsPbBr3 crystals for enhanced gamma-Ray detection[J]. Crystal Growth and Design, 2024, 24(22): 9590-9600. |
| [30] | TOUFANIAN R, SWAIN S, BECLA P, et al. Cesium lead bromide semiconductor radiation detectors: crystal growth, detector performance and polarization[J]. Journal of Materials Chemistry C, 2022, 10(35): 12708-12714. |
| [31] | HUA Y Q, ZHANG G D, SUN X, et al. Suppressed ion migration for high-performance X-ray detectors based on atmosphere-controlled EFG-grown perovskite CsPbBr3 single crystals[J]. Nature Photonics, 2024, 18(8): 870-877. |
| [32] | LI X, ZHANG G D, HUA Y Q, et al. Dimensional and optoelectronic tuning of lead-free perovskite Cs3Bi2I9- n Br n single crystals for enhanced hard X-ray detection[J]. Angewandte Chemie International Edition, 2023, 62(50): e202315817. |
| [33] | ZHAO L, ZHOU Y, SHI Z F, et al. High-yield growth of FACsPbBr3 single crystals with low defect density from mixed solvents for gamma-ray spectroscopy[J]. Nature Photonics, 2023, 17(4): 315-323. |
| [34] | WANG Z W, ZENG L W, ZHU T, et al. Suppressed phase segregation for triple-junction perovskite solar cells[J]. Nature, 2023, 618(7963): 74-79. |
| [35] | LIU Y C, ZHANG Y X, ZHU X J, et al. Triple-cation and mixed-halide perovskite single crystal for high-performance X-ray imaging[J]. Advanced Materials, 2021, 33(8): 2006010. |
| [36] | ZHANG P, HUANG L, LI L L, et al. High-flux hard X-ray Cs1- m Rb m PbBr3 single-crystal detector with suppressed ion migration[J]. ACS Materials Letters, 2024, 6(10): 4810-4818. |
| [37] | XIA M L, YUAN J H, NIU G D, et al. Unveiling the structural descriptor of A3B2X9 perovskite derivatives toward X-Ray detectors with low detection limit and high stability[J]. Advanced Functional Materials, 2020, 30(24): 1910648. |
| [38] | YANG B, PAN W C, WU H D, et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging[J]. Nature Communications, 2019, 10(1): 1989. |
| [39] | ZHANG B-B, WANG F B, LIU X, et al. Ion migration controlled stability in α-particle response of CsPbBr2.4Cl0.6 detectors[J]. The Journal of Physical Chemistry C, 2021, 125(7): 4235-4242. |
| [40] | HE Y H, MATEI L, JUNG H J, et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals[J]. Nature Communications, 2018, 9(1): 1609. |
| [41] | LIU H J, SUN X, LIU J X, et al. Lead-free perovskite Cs2AgBiBr6/Cs3Bi2Br9 single-crystalline heterojunction X-ray detector with enhanced sensitivity and ultra-low detection limit[J]. Science China Materials, 2025, 68(2): 561-570. |
| [42] | KIM Y C, KIM K H, SON D Y, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging[J]. Nature, 2017, 550(7674): 87-91. |
| [43] | XIA M L, SONG Z H, WU H D, et al. Compact and large-area perovskite films achieved via soft-pressing and multi-functional polymerizable binder for flat-panel X-ray imager[J]. Advanced Functional Materials, 2022, 32(16): 2110729. |
| [44] | DONG S Y, FAN Z H, WEI W, et al. Bottom-up construction of low-dimensional perovskite thick films for high-performance X-ray detection and imaging[J]. Light, Science & Applications, 2024, 13(1): 174. |
| [45] | LIU Y L, GAO C S, LI D, et al. Dynamic X-ray imaging with screen-printed perovskite CMOS array[J]. Nature Communications, 2024, 15(1): 1588. |
| [46] | XU Q, WANG X, ZHANG H, et al. CsPbBr3 single crystal X-ray detector with Schottky barrier for X-ray imaging application[J]. ACS Applied Electronic Materials, 2020, 2(4): 879-884. |
| [47] | PANG J C, WU H D, LI H, et al. Reconfigurable perovskite X-ray detector for intelligent imaging[J]. Nature Communications, 2024, 15(1): 1769. |
| [48] | HE Y H, PETRYK M, LIU Z F, et al. CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy γ-rays[J]. Nature Photonics, 2020, 15(1): 36-42. |
| [49] | SHEN N N, GAO T T, OUYANG X, et al. Enhancing gamma-ray spectral resolution in perovskite CsPbBr3 detectors through dark current reduction with guard ring electrodes[J]. ACS Photonics, 2024, 11(9): 3662-3671. |
| [50] | WEI H T, DESANTIS D, WEI W, et al. Dopant compensation in alloyed CH3NH3PbBr3- x Cl x perovskite single crystals for gamma-ray spectroscopy[J]. Nature Materials, 2017, 16(8): 826-833. |
| [51] | HE Y H, KE W J, ALEXANDER G C B, et al. Resolving the energy of γ-ray photons with MAPbI3 single crystals[J]. ACS Photonics, 2018, 5(10): 4132-4138. |
| [52] | GRUNDMANIS N, SARAKOVSKIS A, LUPILOV A, et al. The X- and gamma-ray detection properties of CsPbBr3 perovskite crystals grown by the Bridgman-Stockbarger method[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2025, 1073: 170305. |
| [53] | LIU F Z, WU R, ZENG Y C, et al. Halide perovskites and perovskite related materials for particle radiation detection[J]. Nanoscale, 2022, 14(18): 6743-6760. |
| [1] | 单衍苏, 李兴牧, 王霞, 吴德华, 曹丙强. 全无机卤化物钙钛矿薄膜外延生长研究进展[J]. 人工晶体学报, 2025, 54(7): 1208-1220. |
| [2] | 郑璐瑛, 王芳, 许谢铭, 王帅华, 吴少凡. 基于RP型层状钙钛矿CHA2PbBr4单晶的高效X射线探测[J]. 人工晶体学报, 2025, 54(7): 1272-1281. |
| [3] | 偰航, 靳志文. 薄膜制备方法及其结晶行为对卤化物钙钛矿X射线探测器成像性能的影响研究综述[J]. 人工晶体学报, 2025, 54(7): 1100-1120. |
| [4] | 张爱平, 魏亚洲, 周昌垚, 袁瑞涵, 吴聪聪, 郑霄家. BA2MA3Pb4I13相纯度调控及其对X射线探测的影响[J]. 人工晶体学报, 2025, 54(7): 1256-1264. |
| [5] | 陈燃, 赵啸, 孟钢, GNATYUK Volodymyr, 倪友保, 王时茂. 添加剂辅助生长CsPbBr3单晶及其γ射线探测性能[J]. 人工晶体学报, 2025, 54(7): 1238-1244. |
| [6] | 徐庄婕, 巴延双, 习鹤, 白福慧, 陈大正, 朱卫东, 张春福. 高质量钙钛矿单晶生长及其X射线探测性能表征[J]. 人工晶体学报, 2025, 54(7): 1229-1237. |
| [7] | 陈子航, 王晓丹, 刘坚, 刘鹏, 徐晓东, 徐军. 微下拉法Er∶CNGG晶体的生长及光谱性能研究[J]. 人工晶体学报, 2025, 54(6): 935-941. |
| [8] | 朱丽涛, 刘磊, 原帅, 周声浪, 张华利, 汪晨, 高宇, 曹建伟, 余学功, 杨德仁. 钢缆直径对大尺寸直拉单晶硅生长稳定性的影响[J]. 人工晶体学报, 2025, 54(6): 942-948. |
| [9] | 杜青波, 杨亚鹏, 高旭东, 张智, 赵晓宇, 王惠琦, 刘轶尔, 李国强. 宽禁带半导体碳化硅基核辐射探测器研究进展[J]. 人工晶体学报, 2025, 54(5): 737-756. |
| [10] | 于丰, 郑强, 齐婷玉, 张郁柏, 马亚丽, 贾松岩, 李雪. 白云石精制液可控制备高长径比碳酸钙晶须的研究[J]. 人工晶体学报, 2025, 54(5): 898-908. |
| [11] | 蒋先龙, 郑玮涛, 朱允中. 原位诊断铌酸锂晶体生长界面的翻转现象[J]. 人工晶体学报, 2025, 54(4): 533-542. |
| [12] | 齐占国, 王守志, 李秋波, 王忠新, 邵慧慧, 刘磊, 王国栋, 孙德福, 于汇东, 蒋铠泽, 张爽, 陈秀芳, 徐现刚, 张雷. 4英寸高质量GaN单晶衬底制备[J]. 人工晶体学报, 2025, 54(4): 717-720. |
| [13] | 王子铭, 张雅超, 冯倩, 刘仕腾, 刘雨虹, 王垚, 王龙, 张进成, 郝跃. c面蓝宝石衬底上ε-Ga2O3的金属有机物化学气相沉积[J]. 人工晶体学报, 2025, 54(3): 420-425. |
| [14] | 严宇超, 王琤, 陆昌程, 刘莹莹, 夏宁, 金竹, 张辉, 杨德仁. 2英寸Fe掺杂高阻β相氧化镓单晶生长及(010)衬底性质研究[J]. 人工晶体学报, 2025, 54(2): 197-201. |
| [15] | 杨晓龙, 唐慧丽, 张超逸, 孙鹏, 黄林, 陈龙, 徐军, 刘波. 光学浮区法生长Bi掺杂β-Ga2O3单晶及其光谱性质研究[J]. 人工晶体学报, 2025, 54(2): 202-211. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS