
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (8): 1369-1378.DOI: 10.16553/j.cnki.issn1000-985x.2024.0316
王斌1,2(
), 王晓莉1,2, 侯越云1,2, 刘娇1,2, 刘珊1,2(
)
收稿日期:2024-12-16
出版日期:2025-08-20
发布日期:2025-09-01
通信作者:
刘珊,博士,高级工程师。E-mail:作者简介:王斌(1993—),男,山东省人,博士。E-mail:wangbin@bgri.com
基金资助:
WANG Bin1,2(
), WANG Xiaoli1,2, HOU Yueyun1,2, LIU Jiao1,2, LIU Shan1,2(
)
Received:2024-12-16
Online:2025-08-20
Published:2025-09-01
摘要: 氟化钙(CaF2)晶体具有极高的紫外光透过率(>90%@157 nm)、高的激光损伤阈值和低折射率,是实现深紫外光刻的关键材料。随着半导体行业对高精度和高分辨率光刻技术的不断追求,高品质氟化钙晶体及其生长成为人们关注的焦点。本文首先介绍了CaF2晶体的结构和性能特点,以及常见的晶体缺陷,列举了其在光刻系统中的应用要求;随后,介绍了紫外CaF2晶体的生长方法,包括提拉法、坩埚下降法、温度梯度法和平板法;基于现有研究进展,重点讨论了原料纯度和生长工艺在减少晶体缺陷、可定向生长高品质紫外CaF2晶体方面的影响;最后对晶体生长技术的未来进行了展望。
中图分类号:
王斌, 王晓莉, 侯越云, 刘娇, 刘珊. 紫外氟化钙晶体的生长技术[J]. 人工晶体学报, 2025, 54(8): 1369-1378.
WANG Bin, WANG Xiaoli, HOU Yueyun, LIU Jiao, LIU Shan. Growth Technology of Ultraviolet Calcium Fluoride Crystals[J]. Journal of Synthetic Crystals, 2025, 54(8): 1369-1378.
| Material | CaF2 | MgF2 | SiO2 |
|---|---|---|---|
| Transmission wavelength range | 125 nm~10 μm | 110 nm~8.5 μm | 185 nm~2.1 μm |
| Transmittance | 99.8%@193 nm | 90%@200 nm | 85%@200 nm |
| Refractive index | 1.434 @ 193 nm | 1.38 | 1.45 |
| Density/(g·cm-3) | 3.18 | 3.16 | 2.2 |
| Knoop hardness/(kg·mm-2) | 158 | 415 | 750~800 |
| Melting point/℃ | 1 423 | 1 261 | 1 713 |
| Coefficient of thermal expansion/K-1 | 1.8×10-5 | 1.5×10-5 | 5.5×10-7 |
表1 CaF2、MgF2和SiO2的常用性能参数对比表[12-13]
Table 1 Comparison table of common performance parameters of CaF2, MgF2 and SiO2[12-13]
| Material | CaF2 | MgF2 | SiO2 |
|---|---|---|---|
| Transmission wavelength range | 125 nm~10 μm | 110 nm~8.5 μm | 185 nm~2.1 μm |
| Transmittance | 99.8%@193 nm | 90%@200 nm | 85%@200 nm |
| Refractive index | 1.434 @ 193 nm | 1.38 | 1.45 |
| Density/(g·cm-3) | 3.18 | 3.16 | 2.2 |
| Knoop hardness/(kg·mm-2) | 158 | 415 | 750~800 |
| Melting point/℃ | 1 423 | 1 261 | 1 713 |
| Coefficient of thermal expansion/K-1 | 1.8×10-5 | 1.5×10-5 | 5.5×10-7 |
图3 CaF2晶体的生长方法示意图。(a)向上提拉法[30];(b)坩埚下降法[32];(c)温度梯度法[32];(d)平板生长法[6]
Fig.3 Schematic diagrams of the CaF2 crystal growth. (a) Czochralski method[30]; (b) Bridgman-Stockbarger method[31]; (c) temperature gradient technique[33]; (d) edge-defined film-fed growth[6]
| 生长技术 | 优势 | 劣势 | 主要缺陷 | 对紫外吸收性能的影响 |
|---|---|---|---|---|
| 提拉法 | 生长速度较快,可实时观察生长过程以便及时调整工艺,能定向生长大尺寸晶体 | 设备复杂、成本高;工艺参数多且复杂,对操作技术要求高 | 易出现孪晶、包裹体、气泡、位错和裂纹等缺陷;存在热应力 | 若工艺适当,紫外透过率高;但是孪晶、包裹体和热应力会增加紫外吸收降低透过率 |
| 坩埚下降法 | 设备和工艺相对简单,可同时生长多个晶体,能生长形状复杂的晶体,理论上可以生长更大尺寸晶体 | 生长过程不可视,生长周期长,生长稳定性一般,良品率较低,定向生长有难度 | 晶体易出现轴向温度不均匀导致结晶缺陷,易出现多晶、杂质包裹体等缺陷;存在热应力 | 温度不均匀可能使紫外吸收性能不稳定,晶体一致性难以保证,影响透过率均匀性 |
| 温度梯度法 | 晶体生长界面稳定,能有效控制晶体定向生长可获得高品质较大尺寸晶体 | 生长周期较长,需精准控制温度梯度,对设备要求高,温度梯度与生长速率要匹配,生长过程难监测 | 温度控制不当易产生应力集中出现位错、裂纹等缺陷 | 温度控制良好时,紫外吸收低、透过率高,但是应力集中会降低透过率 |
| 平板生长法 | 可生长出大面积、薄片状晶体、生长过程中晶体表面平整 | 生长速度慢,对原料纯度和环境洁净度要求高 | 易受外界干扰,产生表面缺陷及位错和孪晶等;厚度均匀性难以控制 | 环境控制得当时,在特定波段透过率高,但是表面缺陷和厚度不均匀会导致紫外吸收异常 |
表2 CaF2晶体的四种生长技术对比
Table 2 Comparison of the four growth techniques of CaF2 crystal
| 生长技术 | 优势 | 劣势 | 主要缺陷 | 对紫外吸收性能的影响 |
|---|---|---|---|---|
| 提拉法 | 生长速度较快,可实时观察生长过程以便及时调整工艺,能定向生长大尺寸晶体 | 设备复杂、成本高;工艺参数多且复杂,对操作技术要求高 | 易出现孪晶、包裹体、气泡、位错和裂纹等缺陷;存在热应力 | 若工艺适当,紫外透过率高;但是孪晶、包裹体和热应力会增加紫外吸收降低透过率 |
| 坩埚下降法 | 设备和工艺相对简单,可同时生长多个晶体,能生长形状复杂的晶体,理论上可以生长更大尺寸晶体 | 生长过程不可视,生长周期长,生长稳定性一般,良品率较低,定向生长有难度 | 晶体易出现轴向温度不均匀导致结晶缺陷,易出现多晶、杂质包裹体等缺陷;存在热应力 | 温度不均匀可能使紫外吸收性能不稳定,晶体一致性难以保证,影响透过率均匀性 |
| 温度梯度法 | 晶体生长界面稳定,能有效控制晶体定向生长可获得高品质较大尺寸晶体 | 生长周期较长,需精准控制温度梯度,对设备要求高,温度梯度与生长速率要匹配,生长过程难监测 | 温度控制不当易产生应力集中出现位错、裂纹等缺陷 | 温度控制良好时,紫外吸收低、透过率高,但是应力集中会降低透过率 |
| 平板生长法 | 可生长出大面积、薄片状晶体、生长过程中晶体表面平整 | 生长速度慢,对原料纯度和环境洁净度要求高 | 易受外界干扰,产生表面缺陷及位错和孪晶等;厚度均匀性难以控制 | 环境控制得当时,在特定波段透过率高,但是表面缺陷和厚度不均匀会导致紫外吸收异常 |
| [1] | ARSOV G L. Celebrating 65th anniversary of the transistor[J]. Electronics ETF, 2014, 17(2): 63-70. |
| [2] | RIORDAN M, HODDESON L, HERRING C. The invention of the transistor[J]. Reviews of Modern Physics Supplement, 1999, 71(2): S336-S345. |
| [3] | 翁寿松. 193 nm浸入式光刻技术独树一帜[J]. 电子工业专用设备, 2005, 34(7): 11-14. |
| WENG S S. The 193 nm immersion lithography technology fly one’s own colours[J]. Equipment for Electronic Products Manufacturing, 2005, 34(7): 11-14 (in Chinese). | |
| [4] | 柳 滨. 半导体制造光刻机发展分析[J]. 电子工业专用设备, 2023, 52(5): 1-10+60. |
| LIU B. Analysis on the development of lithography equipment for semiconductor[J]. Equipment for Electronic Products Manufacturing, 2023, 52(5): 1-10+60 (in Chinese). | |
| [5] | OLDHAM W, SCHENKER R. 193-nm lithographic system lifetimes as limited by UV compaction[J]. Solid State Technology, 1997, 40(4): 95-100. |
| [6] | 董永军, 周国清, 杨卫桥, 等. 氟化钙(CaF2)晶体研发进展[J]. 激光与光电子学进展, 2003, 40(8): 43-47. |
| DONG Y J, ZHOU G Q, YANG W Q, et al. Research and development of calcium fluoride crystals[J]. Laser & Optronics Progress, 2003, 40(8): 43-47 (in Chinese). | |
| [7] | 董永军, 周国清, 杨卫桥, 等. 光刻系统用氟化钙晶体的研究进展[J]. 无机材料学报, 2004, 19(3): 449-455. |
| DONG Y J, ZHOU G Q, YANG W Q, et al. Research and development status of calcium fluoride crystals used in lithography system[J]. Journal of Inorganic Materials, 2004, 19(3): 449-455 (in Chinese). | |
| [8] | 苏良碧, 杨卫桥, 董永军, 等. 氟化钙晶体生长的研究进展[J]. 人工晶体学报, 2003, 32(5): 476-482. |
| SU L B, YANG W Q, DONG Y J, et al. Research and progress of CaF2 crystal growth[J]. Journal of Synthetic Crystals, 2003, 32(5): 476-482 (in Chinese). | |
| [9] | 段安锋, 范 翊, 刘景和, 等. CaF2晶体及加工技术研究[J]. 长春理工大学学报(自然科学版), 2007, 30(2): 97-99. |
| DUAN A F, FAN Y, LIU J H, et al. Studies on CaF2 single crystals and its processing technique[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2007, 30(2): 97-99 (in Chinese). | |
| [10] | 段安锋, 沈永宏, 刘景和. 大尺寸氟化钙单晶的光谱特性[J]. 硅酸盐学报, 2007, 35(1): 85-87. |
| DUAN A F, SHEN Y H, LIU J H. Spectra of large-sized calcium fluoride single crystals[J]. Journal of the Chinese Ceramic Society, 2007, 35(1): 85-87 (in Chinese). | |
| [11] | 摩高光学. 深紫外波段的光学材料[EB/OL]. (2024-05-30) [2024-11-01]. https://cn.mirrorganize.com/news/optical-materials-in-the-deep-ultraviolet-band.html. |
| MIRRORGANIZE. Optical materials in the deep ultraviolet band[EB/OL]. (2024-05-30) [2024-11-01]. https://cn.mirrorganize.com/news/optical-materials-in-the-deep-ultraviolet-band.html. (in Chinese). | |
| [12] | 彭云峰, 杨 磊, 刘晓阳. 氟化钙抛光加工工艺及进展[J]. 航空制造技术, 2022, 65(13): 14-25. |
| PENG Y F, YANG L, LIU X Y. Polishing process and progress of calcium fluoride[J]. Aeronautical Manufacturing Technology, 2022, 65(13): 14-25 (in Chinese). | |
| [13] | NICOLOV M. Shaped single crystals of CaF2[J]. Journal of Crystal Growth, 2000, 218(1): 62-66. |
| [14] | 苏良碧, 徐 军. 氟化钙晶体材料及其应用[M]. 北京: 科学出版社, 2006. |
| SU L B, XU J. Calcium fluoride crystal material and its application[M]. Beijing: Science Press, 2006 (in Chinese). | |
| [15] | ALIG R C. Theory of photochromic centers in CaF2[J]. Physical Review B, 1971, 3(2): 536-545. |
| [16] | STAEBLER D L, SCHNATTERLY S E. Optical studies of a photochromic color center in rare-earth-doped CaF2[J]. Physical Review B, 1971, 3(2): 516-526. |
| [17] | 河南驭波科技有限公司, 华为技术有限公司. 一种高纯紫外氟化钙的制备方法: 中国, 202310710406.8[P]. 2023-08-25. |
| Henan Yubo Technology Co., Ltd., Huawei Technologies Co., Ltd. A preparation method of high-purity ultraviolet calcium fluoride: China, 202310710406.8[P]. 2023-08-25 (in Chinese). | |
| [18] | MOUHOVSKI J T. Control of oxygen contamination during the growth of optical calcium fluoride and calcium strontium fluoride crystals[J]. Progress in Crystal Growth and Characterization of Materials, 2007, 53(2): 79-116. |
| [19] | 侍敏莉, 陆宝亮, 徐家跃. 氟化钙晶体的生长与缺陷研究[J]. 功能材料, 2004, 35(增刊1): 192-194. |
| SHI M L, LU B L, XU J Y. Growth and defects of CaF2 crystals[J]. Journal of Functional Materials, 2004, 35(supplyment 1): 192-194 (in Chinese). | |
| [20] | 汤 港, 张 博, 李梦君, 等. CaF2晶体(111)晶面腐蚀坑的动态演变行为与运动学特性[J]. 硅酸盐学报, 2023, 51(6): 1381-1389. |
| TANG G, ZHANG B, LI M J, et al. Dynamic evolution behavior and kinematic characteristics of each pits on(111) crystal face of CaF2 crystals[J]. Journal of the Chinese Ceramic Society, 2023, 51(6): 1381-1389 (in Chinese). | |
| [21] | 郑金祥, 李晓辉, 吴庆辉, 等. 氟化钙晶体缺陷对应力双折射影响机制的研究[J]. 人工晶体学报, 2020, 49(6): 1049-1056. |
| ZHENG J X, LI X H, WU Q H, et al. Study on the influence mechanism of defect on stress birefringence of CaF2 crystal[J]. Journal of Synthetic Crystals, 2020, 49(6): 1049-1056 (in Chinese). | |
| [22] | 陈润俊. 集成电路光刻光源装备的发展历程[J]. 中国集成电路, 2024, 33(7): 25-30. |
| CHEN R J. Development of integrated circuit photolithographic light source driving equipment[J]. China Integrated Circuit, 2024, 33(7): 25-30 (in Chinese). | |
| [23] | 胡楚雄, 周 冉, 付 宏, 等. 集成电路装备光刻机发展前沿与未来挑战[J]. 中国科学: 信息科学, 2024, 54(1): 130-143. |
| HU C X, ZHOU R, FU H, et al. Development frontier and future challenges of lithography machines for integrated circuit manufacturing[J]. Scientia Sinica (Informationis), 2024, 54(1): 130-143 (in Chinese). | |
| [24] | 王向朝, 戴凤钊. 集成电路与光刻机[M]. 第1版. 北京: 科学出版社, 2020. |
| WANG X Z, DAI F Z. Integrated circuit and lithography machine[M]. 1st ed. Beijing: Science Press, 2008 (in Chinese). | |
| [25] | 施宇峰, 王鹏飞, 穆宏赫, 等. 尺寸效应对坩埚下降法生长氟化钙晶体影响机制的数值模拟分析[J]. 人工晶体学报, 2024, 53(6): 973-981. |
| SHI Y F, WANG P F, MU H H, et al. Numerical simulation investigation of size effect on calcium fluoride crystals grown by vertical Bridgman method[J]. Journal of Synthetic Crystals, 2024, 53(6): 973-981 (in Chinese). | |
| [26] |
BAUER M, BISCHOFF M, JUKRESCH S, et al. Exterior surface damage of calcium fluoride outcoupling mirrors for DUV lasers[J]. Optics Express, 2009, 17(10): 8253-8263.
PMID |
| [27] | WANG H J, KOU H M, WANG Y Z, et al. Irradiation damage of CaF2 with different yttrium concentrations under 193 nm laser[J]. Journal of Inorganic Materials, 2023, 38(2): 219. |
| [28] | 宗慧雯, 赵江山, 宋兴亮, 等. 氟化钙晶体深紫外激光辐照损伤特性研究进展[J]. 激光与光电子学进展, 2019, 56(19): 190002. |
| ZONG H W, ZHAO J S, SONG X L, et al. Development of research on damage characteristics of calcium fluoride crystal under deep ultraviolet laser irradiation[J]. Laser & Optoelectronics Progress, 2019, 56(19): 190002 (in Chinese). | |
| [29] | HAHN D. Calcium fluoride and barium fluoride crystals in optics[J]. Optik & Photonik, 2014, 9(4): 45-48. |
| [30] | YANAGI H, NAWATA T, INUI Y, et al. Properties of large CaF2 crystals grown by CZ method for lens materials[C]// Optical Microlithography XVII. Santa Clara, CA. SPIE, 2004: 1886. |
| [31] | LI X H, JIANG D P, WANG J Y, et al. Numerical simulation of heat transfer and convection for CaF2 crystal growth by vertical Bridgman growth method[J]. Crystal Research and Technology, 2020, 55(3): 1900191. |
| [32] | 董建树, 王庆国, 徐 军, 等. 多孔坩埚温度梯度法生长Ho, Y∶CaF2晶体及其光谱性能[J]. 人工晶体学报, 2022, 51(2): 200-207. |
| DONG J S, WANG Q G, XU J, et al. Growth and spectral properties of Ho, Y∶CaF2 crystal grown with porous crucible TGT method[J]. Journal of Synthetic Crystals, 2022, 51(2): 200-207 (in Chinese). | |
| [33] | WESTERHOFF T, KNAPP K, MOERSON E. Optical materials for microlithgraphy application[J]. Proceeding of SPIE, 1998, 3424: 10-19. |
| [34] | PUNDELISEV K A. Continous crystal plate growth process and application[P]. US Patent: 6334 899, 2002-06-01. |
| [35] | 董永军, 周国清, 苏良碧, 等. 温梯法生长CaF2晶体中包裹物的研究[J]. 人工晶体学报, 2004, 33(1): 31-34. |
| DONG Y J, ZHOU G Q, SU L B, et al. Study of the inclusion of calcium fluoride crystals grown by TGT[J]. Journal of Synthetic Crystals, 2004, 33(1): 31-34 (in Chinese). | |
| [36] | 沈永宏, 彭增辉, 关树海, 等. 采用改进的温梯法生长氟化钙晶体[J]. 硅酸盐学报, 2007, 35(8): 1077-1080. |
| SHEN Y H, PENG Z H, GUAN S H, et al. Calcium fluoride crystal growth with improved temperature gradient technique[J]. Journal of the Chinese Ceramic Society, 2007, 35(8): 1077-1080 (in Chinese). | |
| [37] | 董永军, 周国清, 苏良碧, 等. 温度梯度法生长氟化钙晶体[J]. 人工晶体学报, 2003, 32(6): 601-604. |
| DONG Y J, ZHOU G Q, SU L B, et al. Calcium fluoride crystals growth by temperature gradient technique[J]. Journal of Synthetic Crystals, 2003, 32(6): 601-604 (in Chinese). | |
| [38] | KO J M, TOZAWA S, YOSHIKAWA A, et al. Czochralski growth of UV-grade CaF2 single crystals using ZnF2 additive as scavenger[J]. Journal of Crystal Growth, 2001, 222(1/2): 243-248. |
| [39] | MASADA I, NAWATA T, INUI Y, et al. Structure and optical property of large size CaF2 single crystals grown by the CZ method[C]// Optical Microlithography XIX. San Jose, CA. SPIE, 2006: 61542P. |
| [40] | 朱逢锐, 林玉娥, 徐 超, 等. 氟化钙单晶炉温场的计算机模拟及改进[J]. 人工晶体学报, 2016, 45(8): 2034-2038. |
| ZHU F R, LIN Yu’e, XU Chao, et al. Computer modeling and improvement of furnace temperature field for growth of CaF2 single crystal[J]. Journal of Synthetic Crystals, 2016, 45(8): 2034-2038 (in Chinese). | |
| [41] | 徐悟生. 高端紫外氟化钙晶体材料的研究[DB/OL]. (2021-10-20) [2025-01-22]. https://kns.cnki.net/kcms2/article/abstract?v=l4Uq_U3qQ8MU-CmmqaWSYvSfFob_YSiBbm7NRvKjsqXYZdoEoi_x_O-YyPjRS8XtQcjtmdtvbJPOw-tIR5Eh0gtrCudhTGTEM61hPA1wlz7RqmSTZeJEZM4dE74lX2rTW3WBd2oDjZge5MIJIp4egOcnRv4bZDdO_HXCG2VYbv8H5x_A8oTnk17PjiNkWQqf&uniplatform=NZKPT&language=CHS. |
| XU W S. Research on high-end ultraviolet calcium fluoride crystal materials[DB/OL]. (2021-10-20) [2025-01-22]. https://kns.cnki.net/kcms2/article/abstract?v=l4Uq_U3qQ8MU-CmmqaWSYvSfFob_YSiBbm7NRvKjsqXYZdoEoi_x_O-YyPjRS8XtQcjtmdtvbJPOw-tIR5Eh0gtrCu dhTGTEM61hPA1wlz7RqmSTZeJEZM4dE74lX2rTW3WBd2oDjZge5MIJIp4egOcnRv4bZDdO_HXCG2VYbv8H5x_A8oTnk17PjiNkWQqf&uniplatform=NZKPT&language=CHS. (in Chinese). | |
| [42] | MOUCHOVSKI J T, HALTAKOV I V, LYUTSKANOV V L. Growth of ultra-violet grade CaF2 crystals and their application for excimer laser optics[J]. Journal of Crystal Growth, 1996, 162(1/2): 79-82. |
| [43] | 甄西合, 任绍霞, 史达威, 等. 直径300 mm氟化钙晶体的生长[J]. 人工晶体学报, 2010, 39(4): 1087-1088. |
| ZHEN X H, REN S X, SHI D W, et al. Growth of CaF2 crystal with Φ300 mm[J]. Journal of Synthetic Crystals, 2010, 39(4): 1087-1088 (in Chinese). | |
| [44] | 张钦辉, 甄西合, 史达威, 等. Ф370 mm高质量CaF2晶体的生长[J]. 人工晶体学报, 2016, 45(12): 2935-2936. |
| ZHANG Q H, ZHEN X H, SHI D W, et al. Growth of high-quality CaF2 crystal with Ф370 mm[J]. Journal of Synthetic Crystals, 2016, 45(12): 2935-2936 (in Chinese). | |
| [45] | MOUCHOVSKI I T, GENOV V B, PIRGOV L V, et al. Preparation of CaF2 precursors for laser grade crystal growth[J]. Materials Research Innovations, 1999, 3(3): 138-144. |
| [46] | YONEZAWA T, MATSUO K, NAKAYAMA J, et al. Behaviors of metal-oxide impurities in CaF2 and BaF2 single-crystals grown with PbF2 scavenger by Stockbarger’s method[J]. Journal of Crystal Growth, 2003, 258(3/4): 385-393. |
| [47] | XIONG H B, MA Y, ZHENG L L. A modified HEM system for optical crystal growth with high melting temperature[J]. Journal of Crystal Growth, 2007, 299(2): 404-412. |
| [48] | WANG P F, ZHANG Z H, WU Q H, et al. Numerical investigation of the VB growth of CaF2 crystal with supercooled crucible wall[J]. Journal of Crystal Growth, 2023, 617: 127232. |
| [49] | MOLCHANOV A, HILBURGER U, FRIEDRICH J, et al. Experimental verification of the numerical model for a CaF2 crystal growth process[J]. Crystal Research and Technology, 2002, 37(1): 77-82. |
| [50] | HATANAKA Y, YANAGI H, NAWATA T, et al. Properties of ultra-large CaF2 crystals for the high NA optics[C]//Optical Microlithography XVIII. February 27-March 4, 2005. San Jose, USA. SPIE, 2005. |
| [51] | 北京奇峰蓝达光学科技发展有限公司. 一种氟化钙晶体及其制备方法与应用: 中国, CN202311006462.X[P]. 2023-10-31. |
| Beijing Qifenglanda Optical Technology Development Co., Ltd. A calcium fluoride crystal and its preparation method and application: China, CN202311006462.X[P]. 2023-10-31 (in Chinese). | |
| [52] | XU J Y, SHI M L, LU B L, et al. Bridgman growth and characterization of calcium fluoride crystals[J]. Journal of Crystal Growth, 2006, 292(2): 391-394. |
| [53] | 于长江. 大尺寸氟化钙单晶生长中坩埚下降速度的选择实验[J]. 物理, 1983, 12(3): 167-170. |
| YU C J. Selection experiment of crucible descending speed in large-size calcium fluoride single crystal growth[J]. Physics, 1983, 12(3): 167-170 (in Chinese). | |
| [54] | 许蓝云, 董嘉铭, 马 婧, 等. 氟化钙晶体生长及性能研究[J]. 长春理工大学学报(自然科学版), 2016, 39(4): 54-57. |
| XU L Y, DONG J M, MA J, et al. Research on calcium fluoride crystal growth and performance[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2016, 39(4): 54-57 (in Chinese). | |
| [55] | 沈永宏, 王 琦, 闫冬梅, 等. 直径210 mm氟化钙晶体的生长[J]. 人工晶体学报, 2007, 36(3): 490-493+525. |
| SHEN Y H, WANG Q, YAN D M, et al. Diameter 210 mm calcium fluoride crystal growth[J]. Journal of Synthetic Crystals, 2007, 36(3): 490-493+525 (in Chinese). | |
| [56] | 苏良碧, 徐 军, 杨卫桥, 等. 氟化钙晶体的生长和应用研究[J]. 硅酸盐学报, 2003, 31(12): 1202-1207. |
| SU L B, XU J, YANG W Q, et al. Growth and application of CaF2 single crystal[J]. Journal of the Chinese Ceramic Society, 2003, 31(12): 1202-1207 (in Chinese). |
| [1] | 刘首廷, 温旭杰, 韩文斌, 李陈哲, 宋伟, 崔建钢, 宋松, 李勇, 孙德辉, 刘宏. 2~3英寸掺镁近化学计量比钽酸锂晶体生长[J]. 人工晶体学报, 2025, 54(8): 1396-1402. |
| [2] | 李晓旭, 石蔡语, 沈磊, 曾光, 李晓茜, 陈宇畅, 卢红亮. β-Ga2O3纳米带场效应晶体管及日盲紫外光电探测器研究进展[J]. 人工晶体学报, 2025, 54(8): 1352-1368. |
| [3] | 徐庄婕, 巴延双, 习鹤, 白福慧, 陈大正, 朱卫东, 张春福. 高质量钙钛矿单晶生长及其X射线探测性能表征[J]. 人工晶体学报, 2025, 54(7): 1229-1237. |
| [4] | 马文君, 张国栋, 孙雪, 刘宏杰, 刘嘉欣, 陶绪堂. 卤化物钙钛矿半导体单晶及核辐射探测器研究进展[J]. 人工晶体学报, 2025, 54(7): 1091-1099. |
| [5] | 陈子航, 王晓丹, 刘坚, 刘鹏, 徐晓东, 徐军. 微下拉法Er∶CNGG晶体的生长及光谱性能研究[J]. 人工晶体学报, 2025, 54(6): 935-941. |
| [6] | 朱丽涛, 刘磊, 原帅, 周声浪, 张华利, 汪晨, 高宇, 曹建伟, 余学功, 杨德仁. 钢缆直径对大尺寸直拉单晶硅生长稳定性的影响[J]. 人工晶体学报, 2025, 54(6): 942-948. |
| [7] | 于丰, 郑强, 齐婷玉, 张郁柏, 马亚丽, 贾松岩, 李雪. 白云石精制液可控制备高长径比碳酸钙晶须的研究[J]. 人工晶体学报, 2025, 54(5): 898-908. |
| [8] | 蒋先龙, 郑玮涛, 朱允中. 原位诊断铌酸锂晶体生长界面的翻转现象[J]. 人工晶体学报, 2025, 54(4): 533-542. |
| [9] | 齐占国, 王守志, 李秋波, 王忠新, 邵慧慧, 刘磊, 王国栋, 孙德福, 于汇东, 蒋铠泽, 张爽, 陈秀芳, 徐现刚, 张雷. 4英寸高质量GaN单晶衬底制备[J]. 人工晶体学报, 2025, 54(4): 717-720. |
| [10] | 张献, 岳志昂, 赵恩钦, 魏帅康, 叶文轩, 黄敏怡, 辛美波, 赵洋, 王辉. Ga2O3∶Si薄膜制备及其日盲紫外光电探测器性能研究[J]. 人工晶体学报, 2025, 54(3): 462-469. |
| [11] | 王月飞, 高冲, 吴哲, 李炳生, 刘益春. 双生长腔互联MOCVD外延生长氧化镓异质结构及其紫外光电探测器件的研究[J]. 人工晶体学报, 2025, 54(3): 426-437. |
| [12] | 王子铭, 张雅超, 冯倩, 刘仕腾, 刘雨虹, 王垚, 王龙, 张进成, 郝跃. c面蓝宝石衬底上ε-Ga2O3的金属有机物化学气相沉积[J]. 人工晶体学报, 2025, 54(3): 420-425. |
| [13] | 严宇超, 王琤, 陆昌程, 刘莹莹, 夏宁, 金竹, 张辉, 杨德仁. 2英寸Fe掺杂高阻β相氧化镓单晶生长及(010)衬底性质研究[J]. 人工晶体学报, 2025, 54(2): 197-201. |
| [14] | 杨晓龙, 唐慧丽, 张超逸, 孙鹏, 黄林, 陈龙, 徐军, 刘波. 光学浮区法生长Bi掺杂β-Ga2O3单晶及其光谱性质研究[J]. 人工晶体学报, 2025, 54(2): 202-211. |
| [15] | 黄东阳, 黄浩天, 潘明艳, 徐子骞, 贾宁, 齐红基. 垂直布里奇曼法生长氧化镓单晶及其性能表征[J]. 人工晶体学报, 2025, 54(2): 190-196. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS