Journal of Synthetic Crystals ›› 2025, Vol. 54 ›› Issue (12): 2101-2111.DOI: 10.16553/j.cnki.issn1000-985x.2025.0130
• Research Articles • Previous Articles Next Articles
WANG Zhongbao1(
), ZHANG Youhai1, LIU Tianpei2, NI Haoran1, RUI Yang1, MA Cheng1, WANG Liguang1, CAO Qigang1, YANG Shaolin2,3(
)
Received:2025-06-17
Online:2025-12-20
Published:2026-01-04
CLC Number:
WANG Zhongbao, ZHANG Youhai, LIU Tianpei, NI Haoran, RUI Yang, MA Cheng, WANG Liguang, CAO Qigang, YANG Shaolin. Effect of Magnetic Field Strength on the Uniformity of COP Defects in 12 Inch Cz Monocrystalline Silicon[J]. Journal of Synthetic Crystals, 2025, 54(12): 2101-2111.
| Parameter | Value | Unit |
|---|---|---|
| Body length | 2 100 | mm |
| Pulling rate | 0.5 | mm/min |
| Crystal rotation | 8 | r/min |
| Crucible rotation | 1.5 | r/min |
| Diameter | 308 | mm |
| Liquid port distance | 80 | mm |
| Furnace pressure | 7 | Torr |
| Ar flow rate | 100 | L/min |
| Magnetic center position | 40 | mm |
Table 1 Crystal growth parameters used in simulations and experiment
| Parameter | Value | Unit |
|---|---|---|
| Body length | 2 100 | mm |
| Pulling rate | 0.5 | mm/min |
| Crystal rotation | 8 | r/min |
| Crucible rotation | 1.5 | r/min |
| Diameter | 308 | mm |
| Liquid port distance | 80 | mm |
| Furnace pressure | 7 | Torr |
| Ar flow rate | 100 | L/min |
| Magnetic center position | 40 | mm |
| Material | Heat capacity/(J·K-1·kg-1) | Heat conductivity/(W·K-1·m-1) | Emissivity | Density/(kg·m-3) |
|---|---|---|---|---|
| Si (melt) | 975 | 66.5 3.28×105×T-1.341 0 | 0.33 | 2 520 |
| Si (crystal) | 715 | 0.60 | 2 330 | |
| Quartz crucible | 1 100 | 0.85 | 2 200 | |
| Graphite | 1 650 | 122 | 0.80 | 1 750 |
| Graphite felt | 1 800 | 0.3 | 0.86 | 140 |
| Stainless steel | 500 | 30 | 0.38 | 7 930 |
Table 2 Physical properties of material in crystallizing simulation
| Material | Heat capacity/(J·K-1·kg-1) | Heat conductivity/(W·K-1·m-1) | Emissivity | Density/(kg·m-3) |
|---|---|---|---|---|
| Si (melt) | 975 | 66.5 3.28×105×T-1.341 0 | 0.33 | 2 520 |
| Si (crystal) | 715 | 0.60 | 2 330 | |
| Quartz crucible | 1 100 | 0.85 | 2 200 | |
| Graphite | 1 650 | 122 | 0.80 | 1 750 |
| Graphite felt | 1 800 | 0.3 | 0.86 | 140 |
| Stainless steel | 500 | 30 | 0.38 | 7 930 |
Fig.11 COP distribution maps of silicon wafers cut from the silicon rod at 200 mm (a), 1 400 mm (b), and 2 000 mm (c) of the constant diameter under a magnetic field strength of 3 000 Gs
Fig.12 COP distribution maps of silicon wafers cut from the silicon rod at 200 mm (a), 1 400 mm (b), and 2 000 mm (c) of the constant diameter under a magnetic field strength of 500 Gs
| [1] | 林明献. 硅晶圆半导体材料技术[M]. 7版. 台北: 全华图书股份有限公司, 2020. |
| LIN M X. Silicon wafer semiconductor[M]. 7th ed. Taipei: Chuan Hwa Book Co., Ltd., 2020 (in Chinese). | |
| [2] | SINNO T, DORNBERGER E, VON AMMON W, et al. Defect engineering in Czochralski silicon growth[J]. Annual Review of Materials Research, 2015, 4(5): 347-377. |
| [3] | MA Y L, HUI B F. Simulation study on 300mm monocrystalline silicon celerity single crystal[J]. Advances in Engineering Technology Research, 2023, 5(1): 376. |
| [4] | NGUYEN T H T, CHEN J C. Effects of different cusp magnetic ratios and crucible rotation conditions on oxygen transport and point defect formation during Cz silicon crystal growth[J]. Materials Science in Semiconductor Processing, 2021, 128: 105758. |
| [5] | FANG H S, JIN Z L, HUANG X M. Study and optimization of gas flow and temperature distribution in a Czochralski configuration[J]. Journal of Crystal Growth, 2012, 361: 114-120. |
| [6] | SON S S, YI K W. Experimental study on the effect of crystal and crucible rotations on the thermal and velocity field in a low Prandtl number melt in a large crucible[J]. Journal of Crystal Growth, 2005, 275(1/2): 249-257. |
| [7] | ZHANG W Y, GAO D D, WANG S, et al. Simulation of oxygen and carbon impurity transport during magnetically controlled Czochralski silicon growth[J]. AIP Advances, 2025, 15(1): 015103. |
| [8] | PENG R N, WU J, TANG H M. Numerical investigation on the czochralski crystal growth and oxygen concentration with CUSP magnetic field[C]//2024 IEEE 7th International Electrical and Energy Conference (CIEEC), May 10-12, 2024, Harbin, China. IEEE, 2024: 3027-3031. |
| [9] | LOU Z S, XUE Z X, YUAN S, et al. Effects of horizontal magnetic field position on oxygen control in 12-inch Czochralski silicon[J]. Journal of Crystal Growth, 2024, 646: 127861. |
| [10] | 姜 雷, 刘 丁, 赵 跃, 等. 水平磁场作用下Φ300mm直拉单晶硅生长三维数值模拟[J]. 材料热处理学报, 2013, 34(7): 193-198. |
| JIANG L, LIU D, ZHAO Y, et al. Three-dimensional numerical simulation of Φ300 mm Czochralski crystal growth in a horizontal magnetic field[J]. Transactions of Materials and Heat Treatment, 2013, 34(7): 193-198 (in Chinese). | |
| [11] | ZOU Q P, SHENG W, CHEN W N, et al. Effect of horizontal magnetic field position on oxygen distribution in CZ silicon crystal growth[J]. Vacuum, 2024, 225: 113271. |
| [12] | 张 雯, 刘彩池, 王海云, 等. 半导体硅熔体的有效(磁)黏度[J]. 物理学报, 2008, 57(6): 3875-3879. |
| ZHANG W, LIU C C, WANG H Y, et al. The effective viscosity of silicon melt in magnetic field[J]. Acta Physica Sinica, 2008, 57(6): 3875-3879 (in Chinese). | |
| [13] | 谭建国. 使用ANSYS 6.0进行有限元分析[M]. 北京: 北京大学出版社, 2002. |
| TAN J G. Finite element analysis using ANSYS 6.0[M]. Beijing: Peking University Press, 2002 (in Chinese). | |
| [14] | 巴 特, 威尔逊. 有限元分析中的数值方法[M]. 林公豫, 罗 恩, 译. 北京: 科学出版社, 1985. |
| BATHE K J, WILSON E L. Numerical method in finite element analysis[M]. LIN G Y, LUO E, translated. Beijing: Science Press, 1985 (in Chinese). | |
| [15] | BATCHELOR G K. An introduction to fluid dynamics[M]. Cambridge, UK: Cambridge University Press, 2000. |
| [16] | 俞昌铭. 热传导及其数值分析[M]. 北京: 清华大学出版社, 1981. |
| YU C M. Heat transfer and numerical analysis[M]. Beijing: Tsinghua University Press, 1981 (in Chinese). | |
| [17] | 李 进, 张洪岩, 高忙忙, 等. 氩气流速对400mm大直径磁场直拉单晶硅固液界面、热应力及氧含量的影响[J]. 人工晶体学报, 2014, 43(5): 1193-1198+1211. |
| LI J, ZHANG H Y, GAO M M, et al. Influence of argon flow rate on the solid/liquid interface, thermal stress and oxygen concentration in the 400 mm CZ silicon with a magnetic field[J]. Journal of Synthetic Crystals, 2014, 43(5): 1193-1198+1211 (in Chinese). |
| [1] | SONG Yushan, CHEN Hao, LI Song, YANG Mingchao, YANG Songquan, YANG Sen, ZHOU Leidang, GENG Li, HAO Yue, OUYANG Xiaoping. Effect of Low-Temperature Supercritical Fluid Process on Electrical Performance of Degraded Ni/β-Ga2O3 Schottky Barrier Diodes [J]. Journal of Synthetic Crystals, 2025, 54(9): 1574-1583. |
| [2] | LI Jiancheng, ZHONG Zeqi, WANG Junlei, LI Zaoyang, WEN Yong, WANG Lei, LIU Lijun. Control of Oxygen Content During the Growth of Single Crystal Silicon by Czochralski Method [J]. Journal of Synthetic Crystals, 2025, 54(9): 1525-1533. |
| [3] | LI Shifeng, YANG Jinfeng, HUANG Yunqi, ZHANG Bo, LIU Ziqi, SUN Jun, PAN Shilie. Inclusion Defects in Ca(BO2)2 Crystals Grown by Czochralski Method [J]. Journal of Synthetic Crystals, 2025, 54(9): 1501-1508. |
| [4] | WANG Chun, WANG Kun, SONG Xiangman, REN Lin, ZHANG Hao. First-Principles Study on the Electrical Properties of Co-Doped β-Ga2O3 [J]. Journal of Synthetic Crystals, 2025, 54(8): 1426-1432. |
| [5] | XIAO Daizhen, GAO Rong, CHEN Yi, MI Qixi. Growth, Electrical and Optical Properties of All Inorganic Tin Perovskite CsSnBr3 Crystals [J]. Journal of Synthetic Crystals, 2025, 54(7): 1245-1255. |
| [6] | MA Wenjun, ZHANG Guodong, SUN Xue, LIU Hongjie, LIU Jiaxin, TAO Xutang. Recent Advances in Halide Perovskite Semiconductor Single Crystals for Radiation Detection Applications [J]. Journal of Synthetic Crystals, 2025, 54(7): 1091-1099. |
| [7] | SHAN Yansu, LI Xingmu, WANG Xia, WU Dehua, CAO Bingqiang. Research Progress on Epitaxial Growth of All-Inorganic Halide Perovskite Thin Films [J]. Journal of Synthetic Crystals, 2025, 54(7): 1208-1220. |
| [8] | YANG Zaihong, ZHOU Can, FAN Liuyan, ZHANG Yanhui, CHEN Zezhong, CHEN Pingping. Research Progress on Application of Machine Learning in Molecular Beam Epitaxy Growth [J]. Journal of Synthetic Crystals, 2025, 54(6): 924-934. |
| [9] | ZHAO Hao, YU Bowen, LI Qi, LI Guangqing, LIU Yiyuan, LIN Na, LI Yang, MU Wenxiang, JIA Zhitai. Growth of LiGa5O8 Single Crystal Thin Films and Their Conductive Mechanism by the Mist-CVD Method [J]. Journal of Synthetic Crystals, 2025, 54(6): 997-1004. |
| [10] | LI Qingwen, ZHONG Min. Highly Efficient and Reproducible Sonochemical Synthesis of SbI3 and Its Films [J]. Journal of Synthetic Crystals, 2025, 54(6): 1042-1049. |
| [11] | YANG Wenwen, LU Wei, XIE Hui, LIU Gang, LYU Xinyu, BAI Yihan, LI Chenhui, PAN Jiaoqing, ZHAO Youwen, SHEN Guiying. Growth and Performance of Low-Dislocation 6-Inch GaSb Single Crystal [J]. Journal of Synthetic Crystals, 2025, 54(5): 784-792. |
| [12] | SHANG Runlong, CHEN Ya, RUI Yang, WANG Liguang, MA Cheng, YI Ran, YANG Shaolin. Effect of Heater Structure on Oxygen Impurities in Lightly Phosphorus-Doped Czochralski Monocrystalline Silicon with Ultra-Low Oxygen Content [J]. Journal of Synthetic Crystals, 2025, 54(5): 801-808. |
| [13] | DU Qingbo, YANG Yapeng, GAO Xudong, ZHANG Zhi, ZHAO Xiaoyu, WANG Huiqi, LIU Yier, LI Guoqiang. Research Progress of Wide Band Gap Semiconductor Silicon Carbide Based Nuclear Radiation Detector [J]. Journal of Synthetic Crystals, 2025, 54(5): 737-756. |
| [14] | LI Shuai, ZHANG Lei. Research Progress on Near-Infrared Group Ⅳ-Ⅵ Semiconductor Quantum Dot Optical Fibers [J]. Journal of Synthetic Crystals, 2025, 54(5): 757-771. |
| [15] | BAI Shiyu, ZHAO Xingyu, LIN Jiawei, QUAN Guoqiang, WANG Lina. Relationship Between Microstructures of High Concentration Sodium Chloride Aqueous Solutions and Crystals Formed from Them [J]. Journal of Synthetic Crystals, 2025, 54(4): 700-707. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
E-mail Alert
RSS