
人工晶体学报 ›› 2025, Vol. 54 ›› Issue (6): 986-996.DOI: 10.16553/j.cnki.issn1000-985x.2025.0019
收稿日期:2025-01-23
出版日期:2025-06-20
发布日期:2025-06-23
作者简介:李翔(1999—),男,安徽省人,硕士研究生。E-mail:lx0415521@163.com
LI Xiang1(
), CHEN Gen2, SHEN Jie2, ZHU Minghui3
Received:2025-01-23
Online:2025-06-20
Published:2025-06-23
摘要: 不同衬底材料会影响多晶金刚石的结晶度和应力。本文采用微波等离子体化学气相沉积(MPCVD)设备,研究三种不同衬底(W、Si和Mo)对沉积多晶金刚石膜应力和结晶度的影响。首先,为降低边缘效应,通过数值模拟、OES光谱分析方式优化并验证了沉积金刚石膜的最佳基台高度是16 mm。在相同工艺条件下生长多晶金刚石薄膜,利用拉曼光谱、SEM比较三种衬底沉积金刚石的结晶度和质量,三种衬底生长的金刚石晶面取向主要是(111),其中W衬底沉积的金刚石薄膜结晶度均匀性较高。XRD应力分析研究结果表明,W衬底沉积的多晶金刚石薄膜中心到边缘的应力分布较均匀且应力最小。最后,本团队利用W衬底沉积了直径为50.8 mm、沉积时间200 h、厚度0.6 mm、杂质缺陷少、无裂纹的多晶金刚石薄膜,并且中心至边缘的半峰全宽(FWHM)是8.156~8.715 cm-1。TEM表征结果显示,d(111)晶面间距是0.206 nm。表明W衬底较其他两种衬底更适合沉积多晶金刚石,制备用于光学、热学和电子等方面的多晶金刚石薄膜。本研究对沉积大尺寸、低应力、高结晶度多晶金刚石膜和应用于核聚变托卡马克装置的微波窗口提供了有效的参考。
中图分类号:
李翔, 陈根, 沈洁, 祝铭辉. 衬底类型对生长多晶金刚石膜应力和结晶度影响研究[J]. 人工晶体学报, 2025, 54(6): 986-996.
LI Xiang, CHEN Gen, SHEN Jie, ZHU Minghui. Effect of Substrate Type on Stress and Crystallinity of Growing Polycrystalline Diamond Film[J]. Journal of Synthetic Crystals, 2025, 54(6): 986-996.
| Parameter | Power/W | Pressure/kPa | Gas flow: H2/CH4 | Time/h | Substrate temperature/℃ |
|---|---|---|---|---|---|
| Nucleation | 4 100 | 20.5 | 400 sccm/15 sccm | 1 | 910±20 |
| Growth | 4 100 | 21 | 400 sccm/12 sccm | 50 | 910±20 |
表1 沉积金刚石形核和生长参数
Table 1 Nucleation and growth parameters of deposited diamond films
| Parameter | Power/W | Pressure/kPa | Gas flow: H2/CH4 | Time/h | Substrate temperature/℃ |
|---|---|---|---|---|---|
| Nucleation | 4 100 | 20.5 | 400 sccm/15 sccm | 1 | 910±20 |
| Growth | 4 100 | 21 | 400 sccm/12 sccm | 50 | 910±20 |
图3 16 mm基台高度下的电子密度分布图(a)和电子密度在衬底表面中心到边缘变化的模拟结果(b)
Fig.3 Electron density distribution at a height of 16 mm (a) and simulation results showing the variation in electron density from the center to the edge of the substrate surface (b) are presented
图4 12、14和16 mm 基台高度下所对应的光发射光谱(a)和16 mm对应等离子体球的形状(b)
Fig.4 Light emission spectra associated with abutment heights of 12, 14 and 16 mm (a), as well as the morphology of the plasma sphere at 16 mm (b)
图5 直径50.8 mm W衬底上沉积的金刚石薄膜从中心到边缘每隔5 mm选取6个点的拉曼光谱(a)和选取定点的SEM照片(b)~(g)
Fig.5 For the diamond film deposited on a ϕ50.8 mm W substrate, Raman spectra were acquired at six points spaced 5 mm apart along a radial line from center to edge (a), and SEM images were captured at selected locations (b)~(g)
图6 直径50.8 mm Si衬底上沉积的金刚石薄膜从中心到边缘每隔5 mm选取6个点的拉曼光谱(a)和选取定点的SEM照片(b)~(g)
Fig.6 For the diamond film deposited on a ϕ50.8 mm Si substrate, Raman spectra were acquired at six points spaced 5 mm apart along a radial line from center to edge (a), and SEM images were captured at selected locations (b)~(g)
图7 直径50.8 mm Mo衬底上沉积的金刚石薄膜从中心到边缘每隔5 mm选取6个点的拉曼光谱(a)和选取定点的SEM照片(b)~(g)
Fig.7 For the diamond film deposited on a ϕ50.8 mm Mo substrate, Raman spectra were acquired at six points spaced 5 mm apart along a radial line from center to edge (a), and SEM images were captured at selected locations (b)~(g)
图9 W、Si和Mo衬底生长金刚石选取中心到边缘6个检测点所对应的FWHM对比图
Fig.9 FWHM comparison chart of diamond corresponding to six detection points from the center to the edge deposited on W, Si, and Mo substrates
| Material | Lattice constant/Å | Elasticity modulus/GPa | Thermal expansion coefficient/(10-6 K-1) | Melting temperature/K |
|---|---|---|---|---|
| Si[ | 5.431 | 130 | 2.5 | 1 683 |
| W | 3.165 | 411 | 4.5 | 3 600 |
| Mo | 3.147 | 327 | 5.8 | 2 888 |
| Diamond | 3.567 | 1 050 | 1.2 | 3 773 |
| MoC | 4.14 | 392 | 4.9 | 2 965 |
| WC | 2.81 | 710 | 3.8 | 3 143 |
| SiC | 3.1 | 450 | 4.4 | 3 027 |
表 2 衬底、碳化物和金刚石的物理性质
Table 2 Physical properties of substrates, carbides and diamonds
| Material | Lattice constant/Å | Elasticity modulus/GPa | Thermal expansion coefficient/(10-6 K-1) | Melting temperature/K |
|---|---|---|---|---|
| Si[ | 5.431 | 130 | 2.5 | 1 683 |
| W | 3.165 | 411 | 4.5 | 3 600 |
| Mo | 3.147 | 327 | 5.8 | 2 888 |
| Diamond | 3.567 | 1 050 | 1.2 | 3 773 |
| MoC | 4.14 | 392 | 4.9 | 2 965 |
| WC | 2.81 | 710 | 3.8 | 3 143 |
| SiC | 3.1 | 450 | 4.4 | 3 027 |
图10 W、Si和Mo衬底沉积金刚石晶面间距和衍射角sin2ψ关系图
Fig.10 Relationship diagram of diamond crystal face spacing and diffraction angle sin2ψ deposited on W, Si and Mo substrates
图14 W衬底沉积金刚石膜的TEM横截面照片(a)、傅里叶变换(FFT)衍射图(b),以及从选定区域获得的反FFT图像(c)
Fig.14 TEM cross-sectional image (a), Fourier transform (FFT) diffraction pattern (b), and inverse FFT image (c) obtained from a selected region of the diamond film deposited on a W substrate
| 1 | 罗晓航, 许光宇, 李利军, 等. 自支撑金刚石厚膜三方向三点弯曲断裂韧性对比研究[J]. 人工晶体学报, 2024, 53(12): 2085-2093. |
| LUO X H, XU G Y, LI L J, et al. Comparison on three-point-bending fracture toughness of free-standing diamond thick films from three directions[J]. Journal of Synthetic Crystals, 2024, 53(12): 2085-2093 (in Chinese). | |
| 2 | 彭 博, 李 奇, 张舒淼, 等. 金刚石肖特基二极管的研究进展[J]. 人工晶体学报, 2023, 52(5): 732-745. |
| PENG B, LI Q, ZHANG S M, et al. Research progress of diamond Schottky barrier diodes[J]. Journal of Synthetic Crystals, 2023, 52(5): 732-745 (in Chinese). | |
| 3 | 杨俊茹, 岳艳萍, 吕 浩, 等. 沉积温度对不同Co含量WC-Co/SiC/Diamond界面结合性能的影响[J]. 人工晶体学报, 2023, 52(11): 1997-2006. |
| YANG J R, YUE Y P, LYU H, et al. Influence of deposition temperature on interface bonding properties of WC-Co/SiC/diamond with different Co content[J]. Journal of Synthetic Crystals, 2023, 52(11): 1997-2006 (in Chinese). | |
| 4 | SHIKATA S. Single crystal diamond wafers for high power electronics[J]. Diamond and Related Materials, 2016, 65: 168-175. |
| 5 | CUENCA J A, MANDAL S, THOMAS E L H, et al. Microwave plasma modelling in clamshell chemical vapour deposition diamond reactors[J]. Diamond and Related Materials, 2022, 124: 108917. |
| 6 | LI Y F, AN X M, LIU X C, et al. A 915 MHz/75 kW cylindrical cavity type microwave plasma chemical vapor deposition reactor with a ladder-shaped circumferential antenna developed for growing large area diamond films[J]. Diamond and Related Materials, 2017, 78: 67-72. |
| 7 | CHENG H Y, YANG C Y, YANG L C, et al. Effective thermal and mechanical properties of polycrystalline diamond films[J]. Journal of Applied Physics, 2018, 123(16): 165105. |
| 8 | MAHROKH M, YU H Y, GUO Y J. Thermal modeling of GaN HEMT devices with diamond heat-spreader[J]. IEEE Journal of the Electron Devices Society, 2020, 8: 986-991. |
| 9 | AMANO H, BAINES Y, BEAM E, et al. The 2018 GaN power electronics roadmap[J]. Journal of Physics D∶Applied Physics, 2018, 51(16): 163001. |
| 10 | GOYAL V, SUMANT A V, TEWELDEBRHAN D, et al. Direct low-temperature integration of nanocrystalline diamond with GaN substrates for improved thermal management of high-power electronics[J]. Advanced Functional Materials, 2012, 22(7): 1525-1530. |
| 11 | OHKI T, YAMADA A, MINOURA Y, et al. An over 20-W/mm S-band InAlGaN/GaN HEMT with SiC/diamond-bonded heat spreader[J]. IEEE Electron Device Letters, 2019, 40(2): 287-290. |
| 12 | ALTUKHOV A A, AFANAS’EV M S, KVASKOV V B, et al. Application of diamond in high technology[J]. Inorganic Materials, 2004, 40(1): S50-S70. |
| 13 | ZHANG Y, FENG S, WANG T A. Preparating quantum entanglement between microtoroidal-resonator-mediated nitrogen-vacancy centers in diamond[J]. International Journal of Theoretical Physics, 2019, 58(9): 3073-3080. |
| 14 | ZHANG X F, MATSUMOTO T, SAKURAI U, et al. Energy distribution of Al2O3/diamond interface states characterized by high temperature capacitance-voltage method[J]. Carbon, 2020, 168: 659-664. |
| 15 | AIELLO G, SCHRECK S, AVRAMIDIS K A, et al. Towards large area CVD diamond disks for Brewster-angle windows[J]. Fusion Engineering and Design, 2020, 157: 111818. |
| 16 | WANG B, WENG J, WANG Z T, et al. Investigation on the influence of the gas flow mode around substrate on the deposition of diamond films in an overmoded MPCVD reactor chamber[J]. Vacuum, 2020, 182: 109659. |
| 17 | AN K, LIU X P, LI X J, et al. Numerical simulation and experimental study of a novel high-power microwave plasma CVD reactor for diamond films deposition[J]. Journal of Synthetic Crystals, 2015, 44(6): 1544-50. |
| 18 | LI Y F, SU J J, LIU Y Q, et al. A circumferential antenna ellipsoidal cavity type MPCVD reactor developed for diamond film deposition[J]. Diamond and Related Materials, 2015, 51: 24-29. |
| 19 | YAMADA H, CHAYAHARA A, MOKUNO Y. Effect of Ar addition on uniformity of diamond growth by using microwave plasma chemical vapor deposition[J]. Diamond and Related Materials, 2018, 87: 143-148. |
| 20 | 张 帅, 安 康, 杨志亮, 等. 新型MPCVD沉积模式制备高均匀性的D100 mm金刚石薄膜[J]. 真空与低温, 2022, 28(5): 549-555. |
| ZHANG S, AN K, YANG Z L, et al. 100 mm in diameter diamond films with high uniformity prepared by novel deposition mode in MPCVD system[J]. Vacuum and Cryogenics, 2022, 28(5): 549-555 (in Chinese). | |
| 21 | VADIM S, ARTEM M, ALEXANDR A, et al. Effect of substrate holder design on stress and uniformity of large-area polycrystalline diamond films grown by microwave plasma-assisted CVD[J]. Coatings, 2020, 10(10): 939. |
| 22 | WENG J, LIU F, XIONG L W, et al. Deposition of large area uniform diamond films by microwave plasma CVD[J]. Vacuum, 2018, 147: 134-142. |
| 23 | NAD S, GU Y J, ASMUSSEN J. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions[J]. The Review of Scientific Instruments, 2015, 86(7): 074701. |
| 24 | LU J, GU Y, GROTJOHN T A, et al. Experimentally defining the safe and efficient, high pressure microwave plasma assisted CVD operating regime for single crystal diamond synthesis[J]. Diamond and Related Materials, 2013, 37: 17-28. |
| 25 | WENG J, LIU F, WANG Z T, et al. Investigation on the preparation of large area diamond films with 150-200 mm in diameter using 915 MHz MPCVD system[J]. Vacuum, 2023, 217: 112543. |
| 26 | HASSOUNI K, SILVA F, GICQUEL A. TOPICAL REVIEW: modelling of diamond deposition microwave cavity generated plasmas[J]. Journal of Physics D Applied Physics, 2010, 43(15): 153001. |
| 27 | SU J, LI Y, LIU Y, et al. Revisiting the gas flow rate effect on diamond films deposition with a new dome-shaped cavity type microwave plasma CVD reactor[J]. Diamond and Related Materials, 2017, 73: 99-104. |
| 28 | KULISCH W, PETKOV C, PETKOV E, et al. Low temperature growth of nanocrystalline and ultrananocrystalline diamond films: a comparison[J]. Physica Status Solidi (a), 2012, 209(9): 1664-1674. |
| 29 | BOLSHAKOV A P, RALCHENKO V G, YUROV V Y, et al. High-rate growth of single crystal diamond in microwave plasma in CH4/H2 and CH4/H2/Ar gas mixtures in presence of intensive soot formation[J]. Diamond and Related Materials, 2016, 62: 49-57. |
| 30 | SHAO S W, LIU P, YE S, et al. Structural evolution and self-destructive behavior of Mo/Ti transition layers during free-standing diamond-film preparation[J]. Ceramics International, 2024, 50(13): 23677-23684. |
| 31 | GAO Q J, LIN Z D. Physical mechanism of synthesized diamond films on the substrate of a strong carbide forming element[J]. Acta Physica Sinica, 1992, 41(5): 798. |
| 32 | LIU Z, LI C M, CHEN L X, et al. Deposition of crackless freestanding diamond films on Mo substrates with Zr interlayer[J]. International Journal of Minerals, Metallurgy, and Materials, 2010, 17(2): 246-250. |
| 33 | JEONG J H, LEE S Y, LEE W S, et al. Mechanical analysis for crack-free release of chemical-vapor-deposited diamond wafers[J]. Diamond and Related Materials, 2002, 11(8): 1597-1605. |
| 34 | FILLOT F, SABBIONE C. Nanoscale mechanics of thermally crystallized GST thin film by in situ X-ray diffraction[J]. Journal of Applied Physics, 2020, 128(23): 235107. |
| 35 | GUO J C, LI C M, LIU J L, et al. Structural evolution of Ti destroyable interlayer in large-size diamond film deposition by DC arc plasma jet[J]. Applied Surface Science, 2016, 370: 237-242. |
| 36 | KOBAYASHI K, KARASAWA S, WATANABE T, et al. Growth of diamond thin films on silicon and TEM observation of the interface[J]. Journal of Crystal Growth, 1990, 99(1/2/3/4): 1211-1214. |
| [1] | 赵昊, 余博文, 李琪, 李光清, 刘医源, 林娜, 李阳, 穆文祥, 贾志泰. Mist-CVD法生长LiGa5O8单晶薄膜及其导电机理研究[J]. 人工晶体学报, 2025, 54(6): 997-1004. |
| [2] | 李亚洲, 马占红, 姚威振, 杨少延, 刘祥林, 李成明, 王占国. MOCVD载气流量对GaN外延生长的影响[J]. 人工晶体学报, 2025, 54(6): 979-985. |
| [3] | 朱丽涛, 刘磊, 原帅, 周声浪, 张华利, 汪晨, 高宇, 曹建伟, 余学功, 杨德仁. 钢缆直径对大尺寸直拉单晶硅生长稳定性的影响[J]. 人工晶体学报, 2025, 54(6): 942-948. |
| [4] | 陈丹莹, 闫龙, 罗稼昊, 郑振宇, 姜勇, 张凯, 周宁, 廖宸梓, 郭世平. 垂直热壁CVD反应器中C/Si比对SiC高速同质外延生长的影响研究[J]. 人工晶体学报, 2025, 54(4): 569-580. |
| [5] | 邵梅方, 冯晋阳, 侯田江, 马晓. Ca2+/Mg2+/Zr4+不同化学计量比掺杂钆镓石榴石的性能[J]. 人工晶体学报, 2025, 54(4): 543-552. |
| [6] | 朱兴杰, 章平, 左敦稳. 残余应力及电场对4H-SiC表面压痕硬度的影响[J]. 人工晶体学报, 2025, 54(4): 560-568. |
| [7] | 齐占国, 王守志, 李秋波, 王忠新, 邵慧慧, 刘磊, 王国栋, 孙德福, 于汇东, 蒋铠泽, 张爽, 陈秀芳, 徐现刚, 张雷. 4英寸高质量GaN单晶衬底制备[J]. 人工晶体学报, 2025, 54(4): 717-720. |
| [8] | 韩宇, 焦腾, 于含, 赛青林, 陈端阳, 李震, 李轶涵, 张钊, 董鑫. 衬底晶面对MOCVD同质外延生长n-Ga2O3薄膜性质的影响研究[J]. 人工晶体学报, 2025, 54(3): 438-444. |
| [9] | 王月飞, 高冲, 吴哲, 李炳生, 刘益春. 双生长腔互联MOCVD外延生长氧化镓异质结构及其紫外光电探测器件的研究[J]. 人工晶体学报, 2025, 54(3): 426-437. |
| [10] | 殷长帅, 孟标, 梁康, 崔翰文, 刘胜, 张召富. 采用不同辐射传热模型模拟氧化镓单晶生长热场的对比研究[J]. 人工晶体学报, 2025, 54(3): 386-395. |
| [11] | 瞿振宇, 徐文慧, 江昊东, 梁恒硕, 赵天成, 谢银飞, 孙华锐, 邹新波, 游天桂, 齐红基, 韩根全, 欧欣. 氧化镓异质衬底集成技术研究进展[J]. 人工晶体学报, 2025, 54(3): 470-490. |
| [12] | 胡继超, 赵启阳, 杨志昊, 杨莺, 彭博, 丁雄杰, 刘薇, 张红. 镓源温度对LPCVD氧化镓外延温度场影响的仿真研究[J]. 人工晶体学报, 2025, 54(3): 452-461. |
| [13] | 孙汝军, 张晶辉, 李一帆, 郝跃, 张进成. Mg掺杂氧化镓研究进展[J]. 人工晶体学报, 2025, 54(3): 361-370. |
| [14] | 王子铭, 张雅超, 冯倩, 刘仕腾, 刘雨虹, 王垚, 王龙, 张进成, 郝跃. c面蓝宝石衬底上ε-Ga2O3的金属有机物化学气相沉积[J]. 人工晶体学报, 2025, 54(3): 420-425. |
| [15] | 严宇超, 王琤, 陆昌程, 刘莹莹, 夏宁, 金竹, 张辉, 杨德仁. 2英寸Fe掺杂高阻β相氧化镓单晶生长及(010)衬底性质研究[J]. 人工晶体学报, 2025, 54(2): 197-201. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
E-mail Alert
RSS